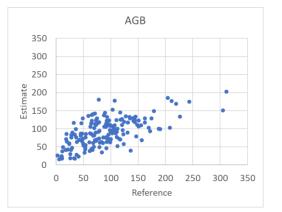
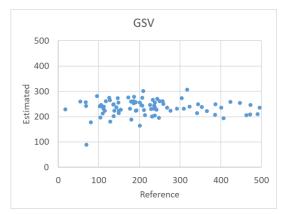


Validation and User Questionnaire Results

User Workshop 1-2 March 2023

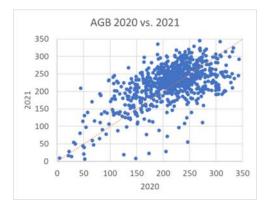
Natalia Málaga

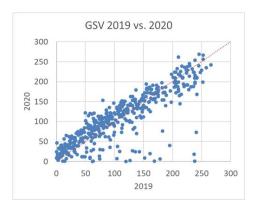

Uncertainty assessment: local-national demos


- Product uncertainty metrics and scatter plots with field reference data
- Yearly consistency with year-to-year scatter plots

Demonstration uncertainty based on sample plots

		Diameter	Height	Basal area	Volume	Above ground biomass				
Catalonia ¹	RMSE%	32.9	39.5	40.2	51.1	46.8				
	Bias%	-1.4	4.3	-1.3	-0.6	0.2				
Extremadura	RMSE%	80.6	70.4	68.1	61.2					
	Bias%	15.6	10.7	4.8	0.6					
Galicia	RMSE%	17.9	23.8	38.5	50.9					
	Bias%	-0.9	-10.6	17.2	3.8					
Peru	RMSE%	16.6	13.8	46.2	58.1	63.2				
	Bias%	0.4	3.3	-3.2	1.2	8.3				
Romania ²	RMSE%	30.7	22.2	33.6	43.9	62.7				
	Bias%	-3.2	-0.7	-3.2	-1.6	-19.4				
Finland ³	RMSE%					60.0				
	Bias%					-0.5				


¹⁾ With 2016 plots



Catalonia uncertainty scatter (AGB)

Peru uncertainty scatter (GSV)

Romania year-to-year consistency (AGB)

Galicia year-to-year consistency (GSV)

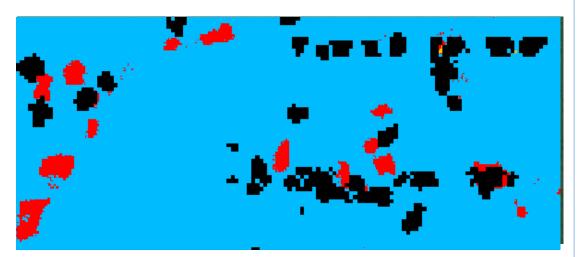
Catalonia yearly averages over all uncertainty assessment plots

	D (cm)	G (m²/ha)	H (dm)	GSV (m³/ha)	BLP (%)	CP (%)	ABM (t/ha)
2020	18,5	18,5	86	92,7	61	38	82,2
2021	18,7	18,4	87	92,9	58	41	80,3

²⁾ For 2021, some irregularities with the AGB reference data

³⁾ Preliminary, average for 2017 and 2019, total Finland

Uncertainty assessment: Change products


FCM

DLR

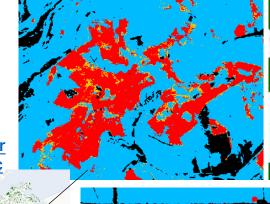
Mainly visual assessment and comparison to other products

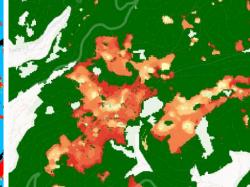
• In Peru Madre de Dios stratified sampling with NICFI Planet

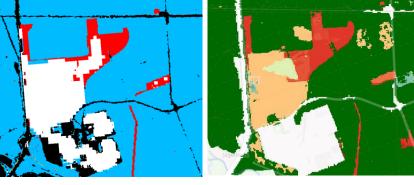
data (4 m spatial resolution)

Changes 2020-2021 Madre de Dios

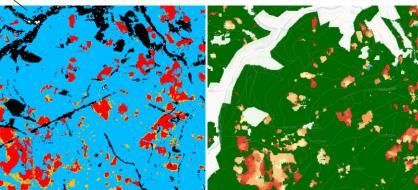
Total clearance:

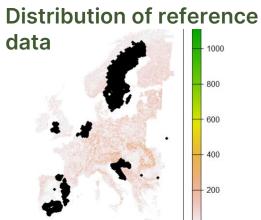

User's accuracy: 91%

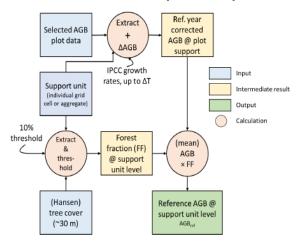

Producer's accuracy: 100%


Tree canopy cover loss 2018-2021 Germany (DLR)

https://geoservice.dlr .de/web/maps/eoc:tc

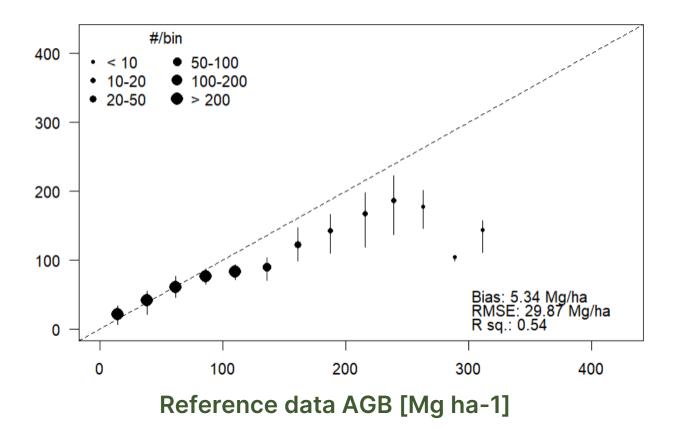

clde





Uncertainty assessment: European wide biomass mapping

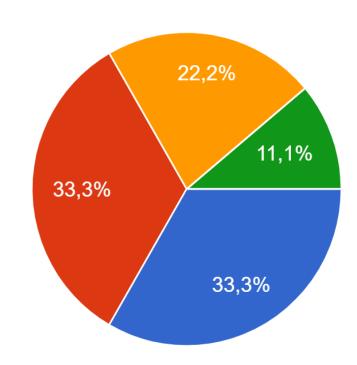
Methodological approach



Accuracy assessment framework using plot2map tool: Araza et al., 2022, RSE

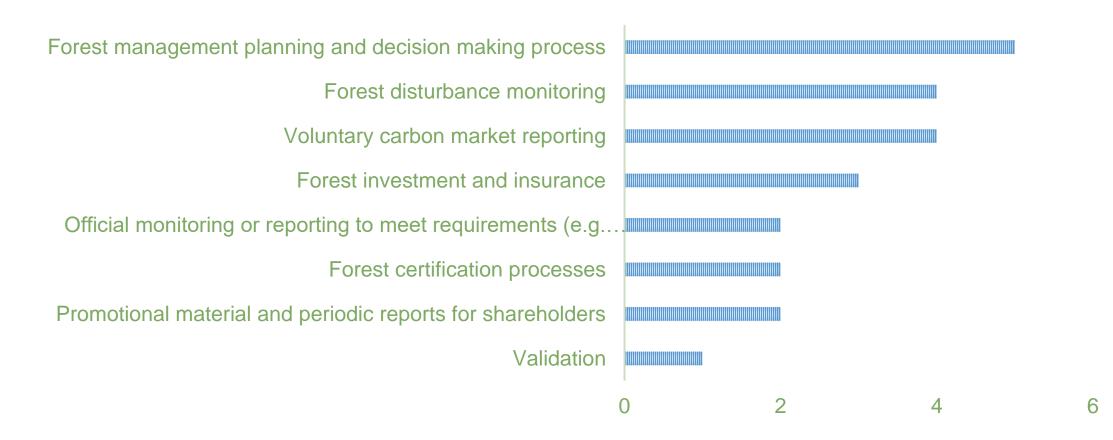
Preliminary results

 20 m European wide biomass map tend to underestimate >100 Mg/ha and to slightly overestimate at lower AGB (<100 Mg/ha), compared to LiDAR maps in particular

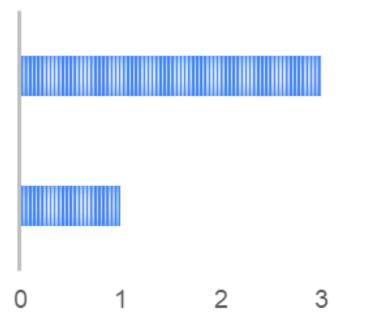


Product assessment - user survey

- Objective:
 - Assess the value of the delivered products (i.e. estimates/maps on forest variables, AGB and AGB change detection) and the overall utility to the project users.
- Seven organizations responded
- Overall Results:
 - General satisfaction with the demonstrations, most recommendations go on the line of enhancing the spatial resolution and the accuracy of the results

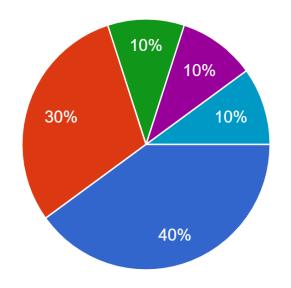

What is the potential for the provided products to be used in the core work and/or <u>decision making cycles of your organization</u>?

Where do you see the <u>potential use</u> of the products in your organization?



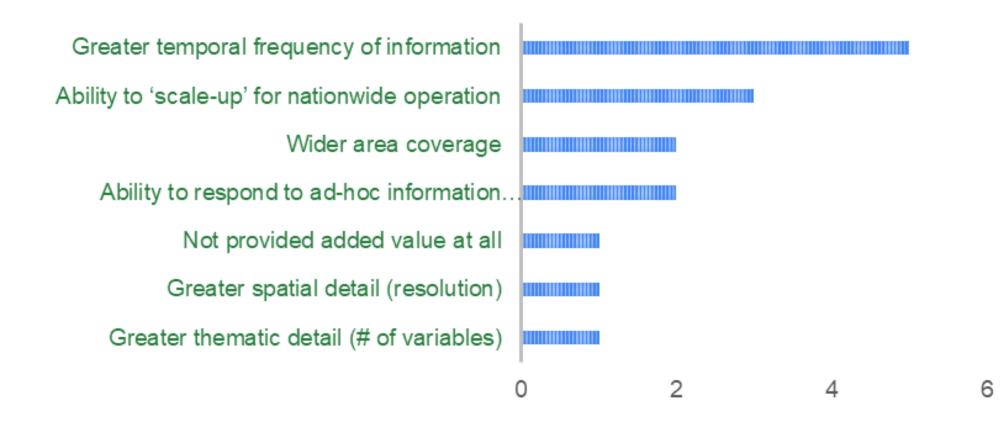
If any, what are the <u>barriers</u> of the organization to uptake the products provided

Quality of the products not being sufficient

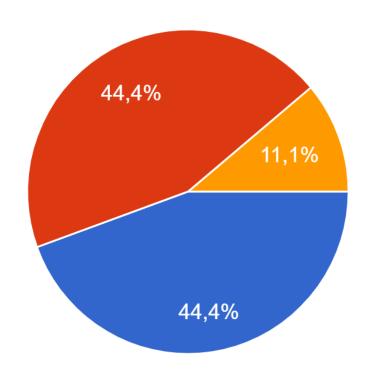

Lack of technical resources (e.g. earth observation data, auxiliary data, algorithms)

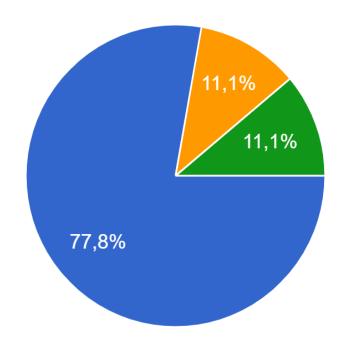
Was the information about production processes and results well described in the <u>Delivery Note</u> provided?

- The technical note was well understood
- The technical note was partially understood
- The technical note was not understood.
- The technical note was not understood.
 If so,
- Nicer graphs
- Technical note was short, e.g., definitions, what biomass is included etc.


Overall recommendations to the Delivery Note:

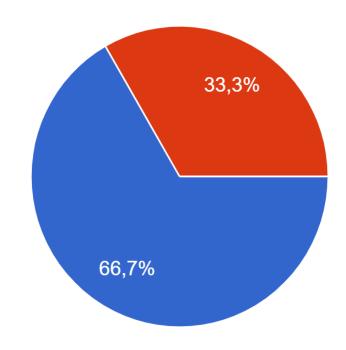
- Format: more schematic, less complex language
- <u>Content:</u> Further information on the temporal extent, biomass model description, forest definition, C pools, justify the reason of using only a selection of the plots measured on the field, etc.
- Meetings that support the explanation of the products


In comparison to existing and historical information your organization regularly uses, where has the <u>products provided added value</u>?


<u>Spatial resolution</u>: are you satisfied or would you have preferred other spatial resolutions (minimum mapping unit)

- Satisfied with the 10-30 m spatial resolution provided
- 1-5 m
- 5-10 m
- **30-100 m**
- 100 m OR coarser

<u>Temporal resolution</u> of the <u>forest structure and biomass products</u>: are you satisfied or would you have preferred other temporal frequency?

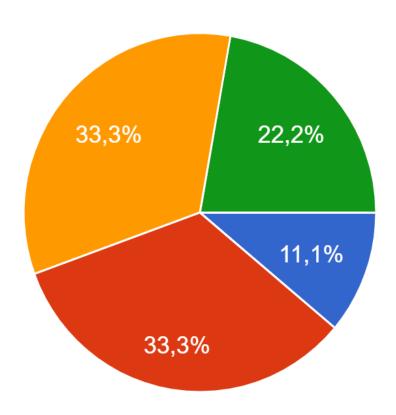


- Satisfied with annual products
- Sub-annual
- Biennial
- 3-5 years
- >5 years

<u>Temporal resolution</u> of the <u>change products</u>: are you satisfied or would you have preferred a different resolution?

Satisfied with annual products

Sub-annual


Biennial

3-5 years

>5 years

Regarding the accuracy of the products, how satisfied are you overall?

- Very satisfied
- Satisfied
- Unsure
- Unsatisfied
- Very unsatisfied

Do you have recommendations on how to improve the products or what kind of products should be provided to make them usable for your organization

- Higher spatial resolution to obtain results for individual stands.
- For forest management, better <u>accuracy</u> is needed together with a better <u>spatial resolution</u>.
- Uncertainty map that go together with the mapped variables.
- Besides the <u>accuracy</u> of the results, the usefulness of the platform will highly depend on how <u>interactive and user-friendly</u> it is.
- <u>Further information</u> on future productions plans, methodological details, tree species information for etc.
- Less overlap required.
- Use more imagery data sources (even not free) and more ground data.

Thank you!

More information at: https://www.forestcarbonplatform.org

