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1. Introduction  

The Forest Carbon Monitoring (FCM) project developed remote sensing-based, user-
centric approaches for forest carbon monitoring. The project implemented a set of tools for 
monitoring of forest structural variables, biomass and carbon stock. In the main project 
(July 2021 - June 2023), a prototype platform was successfully implemented and its 
functionalities demonstrated on nine use cases. In the continuation project (FCM CCN2; 
May 2024 – November 2025) the selection of available tools was widened, and two 
additional use case demonstration areas were added. The continuation of the project 
addressed shortcomings identified by the users during the main project, to close gaps 
between user expectations and the available tools. 

The document at hand, ‘CCN2-D07 Algorithm Theoretical Basis Document (ATBD), 
Update’, provides scientific basis for the tools offered in the FCM toolbox. In addition to the 
description of the algorithms, also the uncertainty estimation methods and main datasets 
used during the project are described. For each tool, examples of the performance in the 
FCM use case demonstrations have been reported to provide an indication of the level of 
expected uncertainty of the output products. 

In addition to this introduction, the ‘CCN2-D07 Algorithm Theoretical Basis Document 
(ATBD)’ contains five main sections: 

• FCM concept and tools, which provides an overview of the Forest Carbon Monitoring 
concept and available tools. 

• Primary datasets, which describes the primary datasets that were used in the 
development and demonstration of the tools. 

• Statistical approaches, which describes the statistical approaches used in the 
evaluation of the uncertainty and utilisation of the of the output products. 

• Algorithm descriptions, which provides descriptions of the algorithms and 
approaches underlying the FCM tools, including the levels of uncertainty reached in 
the use case demonstrations. 

• Conclusion, which wraps up the main message of the ATBD document and provides 
users with advice on how to select algorithm for their use case. 
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2. Forest Carbon Monitoring concept and tools 

2.1 Forest Carbon Monitoring concept 

The Forest Carbon Monitoring concept (Figure 1) aims to provide a toolset to support 
monitoring of forest structural variables, biomass and carbon stock. The underlying idea of 
the concept is that a set of tools is needed to meet the highly varying requirements by 
different types of stakeholders. The goal of the toolset is to be able to provide optimal tools 
for satellite-based forest monitoring tasks depending on the available datasets and specific 
user requirements. Key aspects of the FCM approach include: 

• Maximising the integration of in-situ data whenever available 

• Integration of process-based forest ecosystem carbon modelling into the system 

• Flexibility to user needs ranging from private company area monitoring to 
continental analyses 

 

Figure 1. High-level illustration of the Forest Carbon Monitoring concept. 

 

The algorithms and tools were developed together with the use partners and each tool was 
implemented and evaluated in one of the 11 use cases described in the next section. The 
findings from the use case demonstrations provided valuable information on the 
performance of the algorithms in varying ecosystems and with varying availability of Earth 
Observation (EO) and reference datasets. 
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2.2 Available tools  

While the FCM project mainly concentrated on prediction of forest biomass and carbon 
variables, other forest variables were also needed in the prediction. Traditional forest 
inventory variables were used as inputs for biomass modelling, or growing stock volume 
was converted to biomass estimates using conversion factors. Furthermore, many users 
required information on traditional forest inventory variables as well (such as basal area, 
diameter, height). These basic forest variables are needed to support forest management 
decisions but also allow biomass or carbon flux prediction when required. 

Figure 2 provides an overview of the algorithms used in the Forest Carbon Monitoring tools. 
The tools can be divided into four main groups: 1) Pre-processing, 2) Forest structure 
mapping, 3) Ecosystem modelling and 4) Change detection. Although most of the tools 
developed in the FCM project are flexible regarding the input data, the integrated pre-
processing tools make the implementation of processing workflows more fluent. All the 
forest structure mapping tools can take single date EO imagery or analysis ready products 
as inputs, but the Sentinel-1 and Sentinel-2 compositing tools enable creation of feasible 
input data in cases where suitable single date imagery or analysis ready products are not 
readily available. 

 

Figure 2. Overall workflow of algorithms (orange ovals) used in the Forest Carbon Monitoring. 

The Forest structure mapping tools form the core of the FCM toolbox. Three of the tools 
(namely Probability, k-NN and UNet) are highly versatile tools that can work with multi-
sensor datasets and produce predictions of a wide range of variables, depending on the 
availability of datasets and user requirements. Naturally, correlation of the EO data features 
with the target variable features is a pre-requisite for any meaningful forest variable 
prediction. The BIOMASAR tool is a more specialised tool designed for growing stock 
volume and biomass prediction using radar datasets (typically a combination of C and L-
band data). 
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The ecosystem modelling tool PREBAS enables modelling of biomass and carbon stocks 
and fluxes for current situation as well as future forecasting. As a process-based ecosystem 
model, variations of climatic and other environmental or anthropogenic factors can be taken 
into account while producing forecasts with varying future scenarios. 

In addition to the forest structure mapping and ecosystem modelling tools, also a change 
detection tool called Autochange is provided in the FCM toolbox. This is a versatile generic 
image-to-image change detection algorithm that accepts a wide range of input data types 
and is resistant to general level differences in the pre- and post-change imagery. The tool 
provides change magnitude as its main output. 

The tools described above have been extensively tested in 11 use case demonstration 
sites during the FCM project (Figure 3 and Table 1). Each of these sites had a dedicated 
user partner with specific requirements. The availability of EO and reference datasets 
varied drastically between the use cases. These variations gave an excellent opportunity 
to evaluate the usability of tools in a wide range of situations. 

 

 

 

Figure 3. Geographic distribution of FCM use case demonstrations. 
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Table 1. Characteristics of FCM use case demonstrations. 

Area 
Size 

(S2 tiles) 
Primary 

datasets1 
Primary 

algorithms 
Output variables2 Years 

Galicia 5 

S2, S1 

Private field 
plots 

Probability 

PREBAS 

D, G, H, GSV, AGB, 
BGB, SVI 

2019 + 2020 
+2021 

Ireland 8 

S2, S1 

Private field 
plots 

Probability 

PREBAS 

N, D, G, H, GSV, 
Species% (4), AGB, 

BGB, SVI 

2019 + 2020 
+2021 

Romania 3 

S2, S1 

Private field 
plots 

k-NN 

PREBAS 

D, G, H, GSV, 
Species% (2), Site, 

AGB, BGB, SVI 

2019 + 2020 
+2021 

Extremadura 1 

S2 

Private field 
plots 

Probability 

PREBAS 

D, G, H, AGB, BGB, 
SVI 

2017 + 2022 

Styria 3 

S2, S1 

Private field 
plots 

Probability 

PREBAS 

D, G, H, GSV, 
Species% (2), AGB, 

BGB, SVI 

2015 + 1018 + 
2021 

Catalonia (+ 
Andorra) 

8 

S2, S13 

NFI + private 
field plots 

kNN 

UNet 
N, D, G, H, GSV, AGB 

2020 + 2021 + 
2023 + 2024 

Norway 35 
S2, S1, P2 

NFI field plots 

kNN 

Unet 

PREBAS 

D, G, H, GSV, 
Species% (3), 

AGB, BGB, SVI 

2017 + 2019 + 
2021 + 2023 

Finland 63 
NFI multisource 

maps 
PREBAS AGB, BGB, SVI 2017 + 2019 

Europe 746 

S1, P2, IceSat-2 

NFI field plots 

LiDAR reference 

BIOMASAR GSV, AGB, BGB 
2017 + 2020 + 
2021 + 2023 

Colombia 16 
S2, P2, NICFI 

Field campaign 

Two-step 
sampling 

AGB 2023/2024 

Peru 16 
S2, P2 

NFI field plots 
Probability D, G, H, GSV, AGB 2020 + 2021 

1) S2 = Sentinel-2, S1 = Sentinel-1, P2 = PALSAR 2, NICFI = NICFI Planet mosaic, NFI = National Forest 
Inventory 
2) N = stem density, D = diameter, G = basal area, H = height, Species% (x) = species proportions (of basal 
area) for x species or species groups, Site = site type, GSV = growing stock volume, AGB = above ground 
biomass, BGB = below ground biomass, SVI = stem volume increment 
3) S1 not used in project continuation phase 

 
The lessons learned in these use case demonstrations regarding the uncertainty of the 
output products are reported in this document under the ‘Performance’-subsections within 
each algorithm description. Further information regarding output product uncertainties in 
specific conditions or general applicability of the tools can be obtained by contacting the 
FCM team through the website (https://www.forestcarbonplatform.org/) or through the 
Forestry TEP platform (https://f-tep.com/).  
 
 
 
 
 

https://www.forestcarbonplatform.org/
https://f-tep.com/
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3. Primary data sources 

3.1 General note regarding input data 

It is important to note that most of the algorithms utilised in the FCM tools are capable of 
using multiple data sources. The primary data sources presented in this chapter are the 
ones that were used in the testing phase or in the use case demonstrations during the 
Forest Carbon Monitoring project. Three FCM tools have also been created for 
preprocessing of Sentinel-1 and Sentinel-2 data. These are also the primary data sources 
for the FCM tools. As most of the tools are flexible regarding input data, the best set of 
input data sources can be decided case-by-case depending on the availability of datasets 
and the objectives of the mapping. 

The primary data sources presented in this chapter include: 

1. Sentinel-2 satellite imagery, with a compositing algorithm 

2. Sentinel-1 satellite data, with description of pre-processing steps and compositing 
algorithm 

3. ALOS-2 PALSAR-2 data, with description of the pre-processing steps 

4. TanDEM-X data 

5. Spaceborne LiDAR data 

3.2 Sentinel-2 

3.2.1 Sentinel-2 imagery 

The Sentinel-2 mission is designed to provide global acquisitions of fine high-resolution, 
multispectral optical imagery in fine temporal resolution. It has three satellites in orbit: S2A 
launched on 23 Jun 2015, S2B on 7 Mar 2017 and S2C on 5 Sep 2024. The satellites have 
a wide (290 km) imaging swath width and 10 days revisit time at the equator. With two 
satellites in orbit (the target number to be maintained), this enables five days imaging 
frequency at the equator and 2-3 days imaging frequency at mid-latitudes. With coverage 
limits between 56° south and 84° north latitudes, the data cover all forested areas of the 
world. The Multi-Spectral Instrument (MSI) on board Sentinel-2 satellites has 13 spectral 
bands, four of which have 10 m and six of which have 20 m spatial resolution. The 
remaining three bands with 60 m spatial resolution are mainly used for atmospheric 
correction. 

Sentinel-2 is the main optical satellite data source for the FCM tools. Due to its open and 
free data policy and global coverage, it is an optimal choice for operational forest 
monitoring. Furthermore, it provides sufficient spatial resolution to meet most user 
requirements and a suitable selection of wavelengths for forest variable prediction. Its high 
imaging frequency improves the probability of obtaining cloud free observations. 

The Level 2A surface reflectance product is systematically generated by ESA and 
distributed in tiles of 110 x 110 km2. This has been the main Sentinel-2 data product used 
in the FCM project. Seven spectral bands have been typically used (Table 2), based on 
earlier findings on the importance of bands for forest monitoring (Astola et al. 2019, 
Miettinen et al. 2021). 

 



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

14 
 

Table 2. Sentinel-2 spectral bands typically used in FCM tool demonstrations. 

Sentinel-2 band B02 B03 B04 B05 B08 B11 B12 

Wavelength 
Blue 

0.49 µm 
Green 

0.56 µm 
Red 

0.67 µm 
Red Edge 1 

0.71 µm 
NIR 

0.84 µm 
SWIR 

1.61 µm 
SWIR 

2.19 µm 

Original spatial 
resolution 

10 m 10 m 10m 20 m 10 m 20 m 20 m 

 

3.2.2 Sentinel-2 multi-temporal compositing 
 
In case where suitable single date imagery is not available, the Sentinel-2 compositing can 
be conducted with a tool developed by Terramonitor. The objective of the compositing 
process is to create a cloud-free image from many observations. To this end, each pixel is 
evaluated according to four criteria: cloudiness, resemblance to usual pixels observed in 
the location (based on a reference mosaic), haze and shadows. A weight is then given for 
each pixel according to the four criteria. These weights are used to average the 
observations given as input and produce the final image. The weighted average merging 
algorithm is defined mathematically as follows. Let X=(x1, x2,…,xt) denote a time series of 
observations for a given geographical point, where each element xi denotes an observation 
from the Sentinel-2 satellite. Each observation x=(x(0), x(1),…,x(12)) consists of the band 
values x(0), x(1),…,x(12), where x(0) is the value of the scene classification band provided 
with the Sentinel-2 Level 2A product and x(1),…,x(12) correspond to the values of the 
Sentinel-2 bands 2, 3, 4, 5, 8, 11 and 12, respectively. 

The weight for an observation x is given by the formula w(x)=mc (x) md (x) mh (x) ms (x), 
where mc (x),md (x),mh (x) and ms (x) represent multiplier functions that are based on scene 
classification, spectral distance, haze and shadows, respectively. Each multiplier function 
produces a value between 0 and 1 that describes the validity of the observation with respect 
to one of the criteria. For example, if the multiplier function mh gives the value 1, it means 
that the observation is assumed to be totally valid with respect to haze, i.e., haze-free. If 
the weight of an observation is close to one, it means that the validity of the observation is 
large with respect to all of the criteria. 

The scene classification multiplier is defined by the formula: 

where V = {2,4,5,6,7} denotes the set of valid classes for the scene classification band (2: 
dark area pixels, 4: vegetation, 5: not vegetated, 6: water, 7: unclassified). 

The spectral distance multiplier is used to evaluate the resemblance of the pixel to cloud-
free pixels observed in the location, and is defined using the formula: 

where L={l1,…,ln} is a collection of n cloud-free reference observations and d(x,L) denotes 
the minimum spectral distance between observation x and the observations in L, that is, 
d(x,L)=min{de (x,l) | l ∈L}, where de represents the Euclidean distance function. dmax and pd 
are constants whose values are set to 3000 and 6, respectively. The values were set 
through visual evaluation of preliminary test results for one tile in Finland (35VLJ) and 
earlier experiences with the aim of maximizing the number of observations without including 
any noticeable haze in the final product. 

𝑚c(𝑥) =  {
1 𝑖𝑓 𝑥0 ∈ 𝑉  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.2.2.1) 

𝑚d(𝑥) = (min (max (1 −
𝑑(𝑥,𝐿)

𝑑max
, 0) , 1))

𝑝d

, (3.2.2.2) 
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The haze multiplier is defined using the formula: 

𝑚h(𝑥) = (min (max (1 −
𝑥1

ℎmax
, 0) , 1))

𝑝h

, (3.2.2.3) 

where x1 represents the value of the Sentinel-2 band 1, hmax = 3000 and ph = 6. 

The shadow multiplier is defined by the formula: 

 

where xs is the value of the Sentinel-2 band 8 (near infrared), c0 = 100, c1 = 250 and c2 = 
2000. 

Finally, given the time series of observations X=(x1,x2,…,xt) and the corresponding weights 
w(x1),w(x2),…,w(xt), the weighted average aX of the observations is given by the formula: 

𝑎𝑋 =
∑ 𝑥𝑖𝑤(𝑥𝑖)

𝑡
𝑖=1

∑ 𝑤(𝑥𝑖)
𝑡
𝑖=1

 (3.2.2.5) 

Seven spectral bands are output into the resulting composite images (Table 1). In addition 
to the seven spectral bands, a quality parameter is calculated. The quality band value 
described the probability of at least one good observation, which is calculated per pixel 
using the formula P = 1 - ∏(1-pi), where pi denotes the probability that observation i was 
good for i∈{1,...,n}, where n denotes the number of observations for the pixel. For the final 
composite images, all bands are resampled to match the 10 m resolution bands using 
nearest neighbour resampling. 

3.3 Sentinel-1 

3.3.1 Sentinel-1 data 
 
Sentinel-1 (S1) is a spaceborne mission operated by the European Commission in the 
Copernicus framework and consists, as of year 2025, of three identical satellites (1A, 1B, 
and 1C), each operating a C-band SAR. Sentinel-1A was launched in 2014 and began 
routine observations in 2015. Sentinel-1B was launched in 2016 and became operational 
at the beginning of 2017. Operation of Sentinel-1B ended in 2021 because of a hardware 
failure. Sentinel-1C was launched in 2025.  Each satellite has a 12-day repeat-pass 
interval. When combined, two satellites provide for a six-day repeat coverage and even 
more frequent observations when considering the overlap between adjacent orbits, in 
particular at high latitudes. Over land, the Interferometric Wide Swath (IWS) mode is the 
primary acquisition mode, which allows for single- or dual-polarization acquisitions (VV or 
VV/VH over most of the Earths’ land area, HH or HH/HV over the Arctic and Antarctic) with 
a spatial resolution of approximately 20 m in range and 5 m in azimuth. Being a Copernicus 
mission, the greatest priority is given to acquisitions over Europe, where each satellite 
acquires continuously along both ascending and descending orbital tracks (Figure 4). 
Combined, Sentinel-1A and 1B acquired a total of about 60 000 scenes per year with 60 
observations from ascending and descending orbital tracks each (relative orbit in ESA 

𝑚s(𝑥) =  {
min (𝑚𝑎𝑥 (1 −

xs−c0

c1−c0
, 0) , 1)  𝑖𝑓 𝑥s ≤ 𝑐1,

min (𝑚𝑎𝑥 (1 −
𝑥𝑠−𝑐1

𝑐2−𝑐1
, 0) , 1)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.2.2.4) 
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terminology) over the European demonstration area. Sentinel-1A and 1C will provide for a 
similar data amount in the coming years. 
 

 
 

Figure 4. Observation geometry of the Sentinel-1 mission1. 

 
 
3.3.2 Sentinel-1 pre-processing 
 
The Sentinel-1 C-band backscatter intensity was identified as a core observable to support 
the prediction of forest growing stock volume and above-ground biomass variables 
following the approaches developed in the frame of CCI Biomass. The pre-processing is 
applied to Sentinel-1 images provided in Ground Range Detected (GRD) format. GRD 
images consist of ground-range projected images of the SAR backscatter intensity. Scope 
of pre-processing that is carried out in the FCM project is to generate a stack of terrain 
geocoded, radiometrically calibrated, speckle-filtered and co-registered Sentinel-1 
observations. Pre-processing with the commercial software package by GAMMA Remote 
Sensing comprises: 
  

1) 2 x 2 multi-looking in range and azimuth to obtain pixels with 20 x 20 m2 ground pixel 
posting, 

2) compensation for the noise equivalent sigma nought (NESZ), 
3) updating of orbit state vectors with precision orbit vectors provided by ESA within 20 

days past the image acquisition2 
4) topographic correction accounting for varying pixel scattering areas dependent on 

topography as with Frey et al. (2013) to produce “terrain-flattened” g0 backscatter 
intensity images, 

5) geocoding and orthorectification based on the Copernicus 1-arcsecond Digital 
Elevation Model (DEM) to the target UTM map grid with 20 x 20 m2 pixel size. 

  

 
1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario 
2 https://qc.sentinel1.eo.esa.int/aux_poeorb/ 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://qc.sentinel1.eo.esa.int/aux_poeorb/


Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

17 
 

All geocoded images are resampled to the same MGRS/UTM tiling grid to which ESA 
processes Sentinel-2 data to allow for a joint use/inter-comparison of Sentinel-1 and 
Sentinel-2 imagery. 
  
Given the large level of correlation among biomass maps generated from Sentinel-1 
observations acquired with 6-day repeat intervals and, hence, the limited benefit of 
considering all available observations, only images acquired in dual-polarization (VV/VH) 
IWS mode by one of the two satellites, i.e., S1A, were considered in the FCM project. This 
reduced the amount of data to be processed to 25 to 30 000 GRDs for each of the four 
years for which forest GSV and AGB maps were produced. Only in a few areas with 
reduced data availability, e.g., Southern Finland, data from both satellites had to be 
considered.  
 
For the development and validation of the algorithm to be applied for the pan-European 
mapping, data from testing sites in Finland Romania, and Catalonia were used. Sentinel-1 
GRD images were selected and pre-processed in accordance with the processing workflow 
discussed above. For each testing site, all images acquired by S1A from one descending 
and one ascending relative orbit in two years have been considered (Table 3). Only in the 
case of the testing area in Southern Finland (Finland S) was data from S1B added to the 
stack to obtain a consistent time series of observations from both, ascending and 
descending, orbits (Figure 5). For each testing site the time frame covered by the selected 
Sentinel-1 data was chosen in accordance with the collection of the in situ information 
available for each site.  
  
Table 3. Sentinel GRD imagery processed for the six test areas in Europe. 

Site Satellite Relative orbit Years Number of images 

Finland N S1A 80/116 2018/2019 118 

Finland S S1A/S1B 87/153 2018/2019 89 

Romania S1A 109/131 2019/2020 240 

Catalonia S1A 37/132 2015/2016 143 

 
 

3.3.3 Sentinel-1 compositing 

The forest structural variable retrieval approaches described in Sections 5.2-5.4 benefit 
from using multi-temporal composites of the Sentinel-1 backscatter images. A Forestry 
TEP tool was therefore created, which calculates the average backscatter at VV or VH 
polarization for each Sentinel-1 orbital track. For an annual composite, for example, given 
the 12-day repeat cycle of Sentinel-1A, the Forestry TEP tool computes the average 
backscatter across 30 to 31 images acquired in a given year. Each multitemporal composite 
is accompanied by a single map of the local incidence angle and layover/shadow mask.  
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Figure 5. Location of the study sites. Each site is illustrated with a colour composite of Sentinel-1 
imagery (Red: VV-polarized backscatter; Green: VH-polarized backscatter; Blue: difference in the 

VV- and VH-polarized backscatter) (Santoro et al., 2024b). 

 

3.4 ALOS-2 PALSAR-2 mosaics 

The ALOS-2 mission started on May 24, 2014, and carries an L-band SAR (PALSAR-2 
instrument) with slightly improved performance than its predecessor, ALOS-1 PALSAR-1. 
ALOS-2 PALSAR-2 operates in several high-resolution (e.g., Fine Beam, FB) and a 
moderate resolution ScanSAR mode (WB) with resolutions of the order of 25 and 50 m, 
respectively. Each year global and repeated acquisitions are scheduled during seasons 
that are known to maximize the information content of the backscattered signal with respect 
to land surface properties. In both FB and WB mode, PALSAR-2 acquires data in single 
polarization (HH) and dual polarization (HH and HV, VV and VH over Japan), covering 
swaths of approximately 70 km and 250 km, respectively. While the acquisition plan 
foresees at least one global coverage per year at fine, i.e., 25 m, resolution in FB dual-
polarization mode, multiple acquisitions may be available per year from WB mode, albeit 
only in the tropics.  
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L-band backscatter was identified as a crucial observable to complement Sentinel-1 

backscatter time series for improving the retrieval of GSV and AGB particularly in high 

biomass forests. Because of the data policy applied by JAXA to ALOS-1 and ALOS-2 data, 

only a limited number of images can generally be obtained free of charge, which hinders 

large scale application. Large scale coverages of ALOS-2 PALSAR-2 data could only be 

obtained so far in the form of yearly backscatter mosaics (2015-2021) for the FB mode 

(Shimada and Ohtaki, 2010; Shimada et al., 2014) and per-cycle mosaics (46 days) for the 

WB mode. While the FB mosaics are publicly available, the ScanSAR mosaics are 

available only to a restricted research community (i.e., the Kyoto and Carbon (K&C) 

Initiative). The FB mode mosaics generally present almost complete global coverage 

(subset of the year 2020 mosaic for Europe is shown in Figure 6). The number of available 

observations from the mosaics is one at each location, therefore limiting the performance 

of the GSV and AGB retrieval.  

 

 

Figure 6. ALOS-2 PALSAR-2 HV-pol mosaic produced by JAXA from FB data acquired in 2020. 

 
For the second phase of the FCM project, JAXA granted exclusive access to all ALOS-2 

FBD images acquired over Europe in 2017, 2020, 2021, and 2023. The ALOS-2 data were 

provided in the form of ca. 300 km long strips in range-doppler geometry and processed to 

radiometric terrain-corrected level by the FCM project team. Pre-processing was done with 

the commercial software package by GAMMA Remote Sensing and comprised: 

  

1. multi-looking to obtain pixels with ca. 20 x 20 m2 ground pixel posting, 

2. topographic correction accounting for varying pixel scattering areas dependent on 

topography as with Frey et al. (2013) to produce “terrain-flattened” 0 backscatter 

intensity images, 

3. geocoding and orthorectification based on the Copernicus 1-arcsecond Digital 

Elevation Model (DEM) to the target UTM map grid with 20 x 20 m2 pixel size. 

 
Figure 7 illustrates the number of images available for Europe for the four selected years. 
The best coverage was generally available for Northern Europe. In Southern and Central 
Europe, the number of available observations varied between two and four per year. 
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Figure 7. Coverage of ALOS-2 PALSAR-2 Fine-Beam data provided by JAXA for the year 2017, 2020, 

2021, 2023. 

3.5 TanDEM-X images 

The German TanDEM-X mission flies the two satellites TerraSAR-X and TanDEM-X in a 
close orbit formation establishing a bistatic interferometer in space. The primary mission 
goal was generation of a global DEM (Krieger et al., 2007). The SAR data, jointly acquired 
by both satellites, are operationally processed by the Integrated TanDEM-X Processor. 
Processing comprises bistatic synchronization and focusing, filtering, co-registration, 
phase unwrapping and geocoding (Breit et al., 2012). Outputs are an individual scene-
based (50 km × 30 km) DEM and a co-registered phase preserving single look slant range 
complex SAR images (CoSSC). 

TanDEM-X data were previously demonstrated as a useful source of information for 
predicting the vertical structure of forests. While normally multi-polarizations 
measurements – polarimetric interferometric SAR (Pol-InSAR) signatures are most useful 
for forest structure assessment, also single-pol InSAR measurements in presence of 
external ground DEM (Praks et al., 2012, Krieger et al., 2014), and to considerable extent 
the magnitude of InSAR coherence (Olesk et al., 2016) can be used to estimate 
relationships between TanDEM-X observables and forest variables. 

In FCM, primarily single-pol (HH) CoSSC images acquired during one close to baseline 
year were used in forest variable prediction and producing forest attribute maps. Tentative 
coverage over the Catalonia test site is shown in Figure 8. 
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Figure 8. TanDEM-X data coverage over Catalonia. 

 

3.6 Spaceborne LiDAR data 

LiDAR observations are closely related to vegetation structural features, thus being well-
suited for direct prediction of forest variables related to the biomass. The density of global 
spaceborne LiDAR observations from the ICESat (2003-2009), ICESat-2 (2018-ongoing) 
and GEDI (2019-ongoing) missions is, however, still too coarse to allow for wall-to-wall 
prediction of forest variables. Spaceborne LiDAR observations are, therefore, considered 
here in the process of calibrating SAR models rather than used as predictors of biomass. 
  
Between 2003 and 2009 the Ice Cloud and Elevation Satellite (ICESat) Geoscience Laser 
Altimeter System (GLAS) instrument collected information related to the vertical structure 
of forests in ca. 65 m large footprints collected every 170 m along track. The distance 
between tracks was of the order of 10s of km and increased towards the equator. The 
GLA14 product (version 34), which provides altimetry data for land surfaces only to which 
geodetic, was used to estimate canopy density (CD) calculated as the ratio of energy 
received from the canopy (returns above the ground peak) to the total energy received and 
the height (h) as the distance between the ground peak and signal beginning (RH100). 
Forest height was computed following the approaches in Simard et al. (2011) and Los et 
al. (2012), which calculated RH100 globally and defined a set of filters to discard footprints 
affected by topography and various noise sources in the waveforms (Santoro et al., 2021a). 
  
Unlike the GLAS sensor, the Advanced Topographic Laser Altimeter System (ATLAS) 
onboard the ICESat-2 satellite, uses photon counting to retrieve elevation. With a frequency 
of 10,000 pulses per second, ATLAS achieves a much denser portrait of the surface 
compared to the 40 pulses used by GLAS. The measurement technique is, however, 
strongly affected by the power recorded by the instrument. ATLAS splits the laser into three 
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pairs of beams approximately 3.3 km apart. Each pair consists of a strong and weak energy 
beam (4:1 ratio). For vegetation studies, it is advised to flag measurements corresponding 
to weak beams because of the partly undetected vegetation layering in the returned signals. 
The ATL08 product (Neuenschwander and Pitts, 2019) contains geophysical parameters 
related to vegetation and terrain heights (in particular, the top-of-canopy height) but no 
metric of canopy density. The parameters are provided with a 100 m step size along the 
flight direction. Currently version 6 of the product is available from the National Snow and 
Ice Data Center (NSIDC) in the form of strips of photons collected along one orbit. To obtain 
segments from the original photon data, the original files are reformatted with the pysl4land 
Tool, a set of Python tools to process spaceborne LiDAR (GEDI and ICESat2) for land 
(pySL4Land) applications3. Herewith, the original photons are grouped into segments of 
100 m length and 25 m width. Variables related to canopy height and corresponding quality 
flags are extracted. 
  
Like GLAS, the Global Ecosystem Dynamics Investigation (GEDI) instrument (Dubayah et 
al., 2020) is a full waveform LiDAR. GEDI is installed on the International Space Station 
(ISS) and, therefore, obtains data for land masses between +/-52° latitude. The size of the 
footprint is smaller than for ICESat GLAS (25 m vs. 70 m diameter) and the density of 
observations is greater. GEDI acquires data for 8 parallel tracks, separated by about 600 
m across track. Along each track, footprint centres are separated by 60 m. The distance 
between adjacent orbital tracks was about 1 km until January 2020 after which it increased 
to 70 km. From the waveform data, several height metrics, including canopy height (defined 
as H100) and canopy density are obtained. These level 2A (height metrics) and 2B (canopy 
density) data are provided at the level of individual footprints. Version 2 is currently 
distributed. Data from individual orbital files are reformatted with the pysl4land Tool and 
relevant variables related to canopy density and height are calculated. 
 
 
 
 

 
3 https://github.com/remotesensinginfo/pysl4land 

https://github.com/remotesensinginfo/pysl4land
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4. Statistical approaches 

4.1 Overview of statistical approaches 

One of the overarching ideas of the FCM concept is that all output products are delivered 
with information on the uncertainty of the products. Typically, all EO based forest variable 
maps produced with the FCM tools are accompanied with two different types of uncertainty 
information. Firstly, error metrics (see section 4.2.) are calculated with reference field plots 
(whenever available). These metrics provide information on the overall level of uncertainty 
of the output products. Secondly, pixel-wise uncertainty layers are provided with most 
output products. The methods to calculate the pixel-wise uncertainty layers vary depending 
on the predictor model (see section 4.3) but all of the layers provide the standard deviation 
of the predictions. These layers enable users to analyse the expected level of uncertainty 
on pixel level and the spatial variation of the pixel level error within the area of interest. 

In addition to the provision of plot and pixel level uncertainty information, two statistical 
frameworks to use EO-based forest maps in operational set-up have been demonstrated 
during the FCM project. These include the model-assisted estimation and two-step 
sampling approaches. The model-assisted estimation combines remote sensing and field 
data, improving the accuracy and enabling estimation for smaller geographic area than 
would be possible using only field plots. The two-step sampling approach, on the other 
hand, is a generic approach that can be implemented in highly varying purposes to 
efficiently utilize available datasets (e.g. including wall-to-wall maps, very high resolution 
imagery and field samples). In the FCM project the approach was demonstrated in the 
Colombian use case. 

In this chapter, the statistical approaches used to provide the uncertainty information and 
to support the use of the outputs products in operational setting are described. 

4.2 Output product error metrics 

Whenever reference field plots or other suitable source of reference data are available, 
error metrics are provided with the products produced using the FCM tools. Standard set 
of error metrics provided with the products produced with the Probability, k-NN and UNet 
tools include the following: 
 

1. Root Mean Squared Error (RMSE), which quantifies the difference between 
predicted values and reference values. Lower RMSE values indicate more precise 
predictions. Conversely, high values indicate more error. Note that the RMSE 
includes also the prediction bias (see below). The RMSE is calculated as 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 −  𝑦𝑖̂)2

𝑖

𝑛
 (4.2.1) 

 

where yi represents the reference values, ŷi represents the predicted values, i=1.….n 
indexes the observations, and n is the number of reference observations. 

 
2. Prediction bias (Bias), which provides the difference between the mean of the 

predictions and the mean of the reference observations. This is an important error 
metric for forest monitoring as it tells about the usability of the predictor for large 
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area monitoring. Pixel level errors typically balance each other out for larger areas, 
but the bias reveals the level of systematic error in the predictions. The bias is 
calculated as  

 

 

𝐵𝑖𝑎𝑠 =  
∑ (𝑦𝑖 −  𝑦𝑖̂)𝑖

𝑛
 

 
(4.2.2) 

 

where yi represents the reference values, ŷi represents the predicted values, 
i=1.….n indexes the observations, and n is the number of reference observations. 

 
3. Coefficient of determination (R²), which quantifies the proportion of the variation in 

the target variable that is predictable from the independent variables (used in the 
prediction). High R² values indicates a good fit of the predictor model. The R2 is 
calculated as  

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑖

∑ (𝑦𝑖 − 𝑦𝑖̅)2
𝑖

 (4.2.3) 

 

where yi represents the reference values, ŷi represents the predicted values, 

i=1.….n indexes the observations, and n is the number of observations in the 

validation database.  

 

The RMSE and bias values are also provided as values relative to the mean. The absolute 

value of the metric is compared to the mean value of the variable in the reference plots, 

thereby deriving relative metrics, denoted as RMSE% and Bias%. The relative values allow 

easier comparison of the error metrics between different areas of interest and between 

different variables.  

 
Typically, the error metrics are calculated using an independent set of reference plots, and 
a validation set that has been extracted from the reference data before model training. The 
FCM tools also provide a crossvalidation tool to calculate error metrics for the k-NN 
predictions. This allows all available plots to be used for the mapmaking. This may have 
significant effect on the accuracy, particularly in areas where the number of available field 
plots is already limited. Using the crossvalidation tool also ensures that the split of the 
reference data does not affect the error metrics. 

4.3 Standard deviation layers 

4.3.1 k-NN 
 
In addition to the prediction layer, the FCM k-NN tool outputs also a standard deviation 
layer for each target variable. These standard deviation layers have been calculated as 
the standard deviation of the k neighbours used to derive the prediction.  
 

The standard deviation 𝑠̂(𝑝) is calculated as 

𝑠̂(𝑝) =   √
∑ (𝑦𝑖(𝑝) −  𝑦̂(𝑝))2

𝑖

𝑘
 (4.3.1.1) 
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where 𝑦̂(𝑝) is the prediction for pixel  𝑝 and 𝑦𝑖(𝑝) are the values of the 𝑘 neighbours used 
to calculate the prediction. 
 
The standard deviation layers provide users with information on the level of uncertainty of 
the output products on pixel level. They also enable analysis of the spatial variation of the 
pixel level errors within the area of interest. It is important to note, however, that the pixel 
level errors are expected to balance out when cumulated over larger areas. Therefore, the 
prediction bias (see section 4.2) provides more useful information on the expected level of 
error for larger interest areas. 
 
4.3.2 UNet 
 
For UNet-model tool, epistemic uncertainty of UNet maps on a pixel-level is calculated as 
a model ensemble standard deviation. Here, the idea is that variability in predictions from 
multiple models trained on different data splits (folds) quantifies uncertainty stemming from 
data variability and model generalization. 
 
The approach proceeds as follows. Given an overall training dataset 𝐷, we divide it into 𝑚 

folds/subsets {𝐷1, 𝐷2, … , 𝐷𝑚} and train 𝑚 UNet models with the same architecture in such 
a way that 𝑛-th UNet model is trained on the whole dataset 𝐷 leaving out 𝐷𝑛, with the 
process repeated for all 𝑛 = 1, … , 𝑚 folds. Then during inference, for each mapping unit 
(pixel) 𝑝 of the mapping area, an ensemble mean prediction and ensemble standard 
deviation are computed: 
 

𝑦̅(𝑝) =
1

𝑚
∑ 𝑦̂𝑖(𝑝)

𝑚

𝑖=1

 
(4.3.2.1) 

 

𝑠̅(𝑝) =   √
1

𝑚
∑(𝑦̂𝑖(𝑝) − 𝑦̅(𝑝))

2
𝑚

𝑖=1

 (4.3.2.2) 

 
Ensemble mean is reported as final UNet prediction map, and ensemble standard deviation 
reports the model-related uncertainty. As it considers model-related variance, aleatoric 
uncertainty is not handled and produced estimate can be considered optimistic compared 
to other uncertainty estimates. This uncertainty measure however does not require any 
independent ground truthing and can be reported also for maps produced by “blindly” 
applying the model. 
 
When independent set-aside ground-truth data are available, conventional map-level 
accuracy metrics can be additionally computed, such as RMSE and systematic deviation 
(bias). Then, ensemble-derived epistemic uncertainty  𝑠𝑒𝑝 = 𝑠̅(𝑝) and validation data 

derived bias 𝑏𝑖𝑎𝑠𝑣𝑎𝑙 can be integrated into overall uncertainty reported on a pixel level: 
 

𝑠𝑡𝑜𝑡𝑎𝑙 = √𝑠𝑒𝑝
2 + 𝑏𝑖𝑎𝑠𝑣𝑎𝑙

2  
         (4.3.2.3) 
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4.3.3 BIOMASAR 
 
The uncertainty of a GSV prediction from a measurement of the backscatter is obtained by 

perturbing the measurement and the prediction model parameters (0
gr, 0

veg, q, a and b) 

with individual uncertainties. The uncertainty of the prediction is then defined as the 

standard deviation of the vector of perturbed GSVs obtained by repeating the perturbation 

N times. The variance of the GSV prediction from Eq. (5.5.1.6) is then the sum of a variance 

component and a covariance component that accounts for the temporal correlation of 

prediction errors at a given pixel. 

 
(4.3.3.1) 

where 

 (4.3.3.2) 

 

In Eq. (4.3.3.1), the variance component is modelled as a linear combination of the 

variances associated with the individual stem volume estimates δ(Vi)2, where 𝑤𝑖
2  is the 

weight introduced in Eq. (5.5.1.5) (Santoro et al., 2015). The covariance component is 

expressed in a similar manner where individual error co-variances are weighted. The error 

covariance in Eq. 4.3.3.2 is obtained from the pairwise standard deviation of GSV estimates 

from image i and image j and the corresponding correlation of errors, rij. To estimate the 

correlation of errors, a reference dataset is needed such as extensive plot inventory 

measurements or a LiDAR map of GSV with known accuracy 

The variance of the stem biomass prediction is obtained with Eq. (4.3.3.3) and accounts for 

the variance of the stem volume prediction from Eq. (4.3.3.1) and of the wood density. The 

variance of the wood density, δ(WD)2, is modelled using the second order polynomials 

developed for Eurasian boreal forests (Thurner et al., 2014) 

 (4.3.3.3) 

The variance of the total biomass density is then obtained by adding the variances of the 

individual biomass component. The variance of the branch, foliage and root biomass is 

modelled as in Thurner et al. (2014) 

  

 (4.3.3.4) 

 

4.4 Model-assisted estimation 

The aim of using model-assisted approaches is to improve forest variable estimates, 
typically over some larger area, that are i) only based on a probability sample, so-called 
Direct estimates, and ii) only based on remote sensing products, so-called Pixel-counting 
or Synthetic estimates. The model-assisted estimation is a general approach that can be 
applied to support integration of EO based products (such as the ones produced with the 
FCM tools) into existing forest monitoring schemes based on probability sampling. The 
details of the application vary case-by-case, but the general concept remains the same. As 
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an example of the procedure and algorithms, we describe here the way model-assisted 
estimation was applied in the Norway use case during the FCM project. 
 
In the context of this use case, the probability sample consists of National Forest Inventory 
(NFI) field sample plots. It can, however, also be any other type of reliable reference 
measurements for the variable of interest, for example taken from aerial images or drone 
acquisitions, as long as they satisfy the requirements of a probability sample. In the context 
of the FCM project, the remote sensing products are maps of forest attributes including 
volume and biomass. But again, the EO based products can be any kind of variable of 
interest mapped wall-to-wall by remote sensing or other approaches. For simplicity, we will 
describe the methodology in the remainder of the text only for the context of this project 
with timber volume as the variable of interest, and Norwegian NFI data as the probability 
sample. The aim is to improve the mean volume estimate (over all land uses) for the 
productive low-land stratum of the NFI in Norway south of Nordland County as the area of 
interest. 
 
The improvement of model-assisted approaches is achieved by combining the direct NFI-
based estimate of the mean volume with the remote sensing-based pixel-counting 
estimate. The following steps are needed for a model-assisted estimate: 

1) Determine the difference between volume (m3/ha) observed at each sample plot 
and the mapped (predicted) volume (m3/ha) at the same location. The difference is 
calculated as observed minus predicted. Due to this difference, the applied model-
assisted estimator in our case is referred to as the Difference estimator. 

2) Calculate the mean of the differences. This mean is a correction factor for the 
systematic error or bias in the remote-sensing based pixel-counting estimator. If, 
for example, the map more commonly predicts lower values than observed, then 
the correction factor will be positive and indicates a systematic underestimation by 
the map. 

3) Determine the pixel-counting estimate by calculating the mean over all wall-to-wall 
map pixels covering the area of interest. 

4) Obtain the model-assisted difference estimate by adding the pixel-counting 
estimate and the correction factor. 

5) Calculate the variance and standard error of the differences. This is the design-
based standard error of the correction factor and the difference estimator itself. 

 
For determining the improvement of using the map in addition to the NFI field data, the 

direct estimate, including the variance and standard error is calculated. If the map is even 

slightly correlated with the field data, then the variance of the differences is smaller than 

the variance of the observations and the difference estimator is more precise than the direct 

estimator. If the map is of low quality, maybe because it exhibits artifacts that result in 

outliers, also the opposite may be the case. An intuitive measure of the improvement is the 

Relative Efficiency (RE), which is the ratio of the variance of the direct estimator (nominator) 

and the variance of the difference estimator (denominator). If RE is larger than 1, the 

difference estimator is more efficient than the direct estimator. The RE can be seen as a 

factor by which the number of field samples would need to be multiplied to achieve the 

same accuracy with the direct estimator as with the difference estimator (assuming that 

these additional observations would not be used in the difference estimator). 
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The difference estimator provides improvements in two ways: 1) It results in higher 
precision of the direct NFI-based estimate (if the map has ok quality), and 2) it provides a 
reliable uncertainty estimate for the remote-sensing based map. There are, however, also 
a few requirements which include that the reference sample and map data 1) are assumed 
to be fully independent, 2) have temporal agreement, and 3) agree in resolution. In practise, 
these requirements are seldomly fully met. 
 
Using equations, the steps for a model-assisted estimate are: 
 
The difference d is given by 
 

  𝑑𝑖 = 𝑦𝑖 − 𝑦𝑖̂ (4.4.1) 

 
with i … n indexing the sample plots and n = number of observations, y are observed 

values and ŷ are mapped values extracted or otherwise obtained for sample plots. 
 
The correction factor C is given by 
 

 𝐶̂ = ∑ 𝑑𝑖/

𝑖

𝑛 (4.4.2) 

 
The pixel counting estimate is given by the mean of all pixels in the AOI 
 

 μ = ∑ 𝑦𝑖̂

𝑖

/𝑁 (4.4.3) 

 
where N is the total number of pixels. 
 
The difference estimator is given by 
 

 𝑌𝐷𝑖𝑓𝑓̂ = μ + 𝐶̂ (4.4.4) 

 

The variance of 𝑌𝐷𝑖𝑓𝑓̂ and 𝐶̂ is given by 
 

 𝑉(𝑌𝐷𝑖𝑓𝑓̂) = 𝑉(𝐶̂) = 1/𝑛 ∑ 𝑑𝑖
2/

𝑖

(𝑛 − 1) (4.4.5) 

 
with the standard error  
 

 𝑆𝐸 = √𝑉(⋅) (4.4.6) 

 
In addition, the direct estimate is given as 
 

 𝑌𝐷𝑖𝑟̂ = ∑ 𝑦𝑖/

𝑖

𝑛 (4.4.7) 

 
with variance  
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 𝑉(𝑌𝐷𝑖𝑟̂ ) = 1/𝑛 ∑(𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2/

𝑖

(𝑛 − 1) (4.4.8) 

 
 
and 
 

 𝑅𝐸 = 𝑉(𝑌𝐷𝑖𝑟̂ )/𝑉(𝑌𝐷𝑖𝑓𝑓̂) (4.4.9) 

 
 

4.5 Two-step sampling approach 

Sometimes there are multiple different types of datasets available for a given interest area, 
including e.g. LiDAR or very high resolution remote sensing data, medium resolution 
satellite data and a possibility for field plot measurements. In these kinds of situations, 
statistical approaches can be defined to enable efficient use of the datasets and derivation 
of rigorous uncertainty information. As an example of a statical framework, we present a 
‘two-step’ sampling approach created for the Colombian use case demonstration. The 
phrase ‘two-step’ refers to two separate samplings, one being a field measurement 
campaign and the other being a sampling for visual interpretation on Planet data. These 
two steps are then combined in the estimates of biomass. 
 
Here we present the main concepts and considerations that were taken into account when 
defining the framework. The aim is that this description serves as a guideline for future 
users defining similar frameworks for their use cases. Note that in our example case the 
field measurement campaign was conducted first. The order of the samplings could have 
been also different. This would affect also the optimal statistical procedures.  
 
4.5.1. Design and analysis of field campaign sampling 
 
Field reference data is crucial for accurately calibration of estimates derived from EO data. 
Over the study area in Colombia, several land cover (LC) classes were identified with EO 
data (Sentinel-2, PALSAR-2), presumably containing varying amounts of biomass. For the 
sake of this example, these LC classes are called ‘Primary 1’, ‘Primary 2’, ‘Regrowth 1’ and 
‘Inundated’. Accurate biomass estimates were needed for these four LC classes for the 
study area; the other land cover classes (presumed to have no or very little biomass) could 
be given biomass estimates based on them. 
 
At the top level, the sampling design of the field campaign was elementary: in the four LC 
classes we made simple random sampling (SRS) designs, independently of each other. In 
the practical level, there were several important details that needed to be considered. The 
locations had to be accessible in practise (within 6 km from rivers) and there had to be 
spare locations in case the field crew found some locations inaccessible during the field 
campaign. The total sample size was limited due to time and resources limitations. When 
divided into four different LC classes, this meant small subsamples and large uncertainties. 
Furthermore, it was possible that the true LC class of a selected location was different from 
the LC class of the map that was used to select the location. These issues meant that there 
was an inevitable danger of selection bias in the process that finally produced the data.   
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The field measurement campaign was carefully documented, and we were able to assure 
that the sampling design was followed without any such compromises that were not 
considered beforehand. This is important for the statistical validity of the results. In this 
example case, there were finally 46 randomly selected locations with known biomass and 
with known inclusion probabilities. Therefore, we were confident that the effect of the 
selection bias is small.    
 
After the field campaign data was processed, some exploratory data analyses were 
performed to see possible outliers and whether the sampling distribution was normal. Box-
Whisker plots (Figure 9) are useful for obtaining an overview of data. 
 

 
Figure 9. Box-Whisker plots of Colombia use case field measurement campaign. 

 
 
For most of the classes the distributions look as expected, with relatively normal 
distributions, although with rather high variance in some LC classes. However, in the case 
of ‘Primary 2’ sample, we immediately noticed different characteristics compared to the 
other samples. To further investigate the distribution of plots within each class, we used 
the Normal-Quantile plots. The Normal-Quantile plots are plots of points, 
 

 (Φ−1 (
𝑖

𝑛 + 1
) ,  𝑥(𝑖)) ,  𝑖 = 1, … , 𝑛 (4.5.1.1) 

 
 
where Φ is the cumulative distribution function (CDF) of the standard normal distribution 

and 𝑥(𝑖)  is the 𝑖 :th order statistic. Generally, the sampling distributions can be assumed to 

follow the normal distribution, and the Normal-Quantile plot is a tool to visually detect 
deviations from this assumption. 
 
Figure 10 presents the Normal-Quantile plots for each LC class measured in the Colombia 
field measurement campaign. While the other classes show close to normal distribution, 
the ‘Primary 2’ sample clearly deviates from the normal distribution. This can be seen e.g. 
from the large difference between the mean and median (the two horizontal lines). 
Moreover, the ‘Primary 2’ sample may be bimodal, with a rather large gap in observations 
between 200 and 300 t/ha. Investigation for the reasons of possible bimodality revealed 
some problems in the correspondence between the LC class ‘Primary 2’ and real-world 
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‘Primary 2’ class. The real-world class included two different types of forests, which had 
shown similar EO characteristics, but have different levels of biomass.  
 

 
Figure 10. Normal-Quantile Plots of Colombia use case field measurement campaign. 

 
When the normal distribution is a plausible model for a sample, it means that the two 
parameters, mean and variance, are sufficient to describe the data. The effect of possible 
outliers can be studied by computing robust estimates of the sample mean and comparing 
them against the sample mean. Such robust estimates include Trimmed mean, Winsorized 
mean, and median.  
 
Finally, the confidence intervals around the mean can be computed in various ways, 
including the t-distribution based model and bootstrapping. We preferred bootstrapping in 
this example case since it provides meaningful results also when the sampling distribution 
deviates from the normal distribution. 
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4.5.2. Design and analysis of sampling for visual interpretation 
 
The visual image interpretation with 5 m resolution NICFI Planet mosaic was conducted to 
improve understanding on the LC class characteristics and distribution. Altogether 1554 
visual sample plots (100 x 100 m) were evaluated, recording the LC class distribution. 
Within this information, it was possible to finetune LC class distribution in the interest area 
and define biomass estimates for the classes where no field sampling was conducted, 
thereby improving the biomass estimates derived from the LC map for particular interest 
areas. 
 
The sampling design for visual interpretation (Figure 11) was a stratified design with three 
strata. In two of the strata, indexed by ℎ,  ℎ ∈ {1,3}, it was also a two-stage design. In 
stratum ℎ = 2 , a simple random sampling design was performed. In strata ℎ ∈ {1,3}, a grid 
was first randomly selected and then a simple random sampling was performed from the 
grid. 
 

 
Figure 11. Stratified design for the visual interpretation (SRS stands for stratified random sampling). 

 
Table 4 below collects our notation. The population unit in the visual interpretation sampling 
is a square of size 1 ha. In the cases of the first-stage selection of a grid of population units, 
the possible grids are disjoint, and the union of all grids cover the whole area. 
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Table 4. Statistical notions used. 

 
 
The sizes of the grids vary; therefore, the usual sample mean of the two-stage sampling in 
strata ℎ,  ℎ  ∈  {1,3}, is biased. The following formula defines an unbiased estimate: 
 
 
 

 𝑦
ℎ

𝑘
=

𝑚𝑁ℎ(𝑚, 𝑘)

𝑁ℎ
𝑦

ℎ
  (4.5.2.1) 

 
 
where 𝑦

ℎ
 is the ordinary sample mean. That is, the ordinary sample mean must be 

multiplied by a factor, which depends on the design parameters and the chosen grid. The 
variance of the unbiased estimator is 
 

𝑉𝑎𝑟(𝑦
ℎ

𝑘
) =

𝑚

𝑁ℎ
2 (∑ 𝑁ℎ(𝑚, 𝑗)(𝑁ℎ(𝑚, 𝑗) − 𝑛ℎ)

𝑚

𝑗=1

) 𝑉𝑎𝑟(𝑦
ℎ

)

+
1

𝑁ℎ
2 (𝐸𝑦

ℎ

𝑘
)

2
𝐸(𝑚𝑁ℎ(𝑚, 𝑗) − 𝑁ℎ)2 

(4.5.2.2) 

 
See Chapter 11.2 in (Cochran 1977) for a similar example. Finally, the variance of the 
stratified sample mean is computed by the formula 
 

𝑉𝑎𝑟(𝑦
𝑠𝑡

) = 𝑊1
2𝑉𝑎𝑟(𝑦

1

𝑘1) + 𝑊2
2𝑉𝑎𝑟(𝑦

2
) + 𝑊3

2𝑉𝑎𝑟(𝑦
3

𝑘3) (4.5.2.3) 

 

Above 𝑘1 and 𝑘3 refer to selected grids in strata ℎ = 1  and ℎ = 3 respectively. Recall that 

sampling in different strata is performed independently of each other, including the first-

stage selection of a grid. 

 

With this approach we were able to provide improved biomass estimates with confidence 

intervals for each of the LC classes. These estimates can be used to calculate benchmark 
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biomass estimate for the area of interest and any desired sub-areas. The estimates can 

also be used to evaluate biomass changes together with the benchmark map and activity 

data. For all of these outputs, confidence intervals can be provided. 

4.6 European wide biomass map accuracy assessment 

An independent accuracy assessment for the European wide biomass map was conducted 
in line with the new CEOS LPV protocol for biomass from space calibration and validation. 
The new CEOS protocol contains a dedicated section about using existing in-situ data as 
reference for the validation of larger area biomass maps, assuming they are properly 
screened, processed and harmonized, to allow for comparison with large area biomass 
map predictions. The validation procedures were mostly developed as part of the CCI-
Biomass project (CCI Biomass 2020) and have been slightly adapted to the FCM case. 
 
The accuracy assessment of a European wide map required an effort to include a large 
number of different reference data sources covering all different geographical regions and 
forest types across Europe. Thus, we relied on AGB reference data that were not 
specifically produced for validation purposes but that were rather collected within the 
context of National Forest Inventories (NFI) and other efforts at local to regional scale. This 
had consequences, i.e. that we could not rely on a design based sample. Also, the sampling 
frames were different as the biomass map concerns mean forest biomass density 
discretised in spatial grid cells (including non-forested area) while the inventories employ 
non-uniformly sized and typically small plots within forested areas. Thus, specific care had 
to be taken for the map-plot comparison. The assessments were performed at the map 
pixel level, as well as spatially aggregated over larger pixel blocks. 
 
It is important to realize that the reference data were also estimates and therefore affected 
by errors that should be taken into account when using them in the map-plot comparisons 
(Réjou-Méchain et al. 2017, Réjou-Méchain et al. 2019). We deliberately did not specify 
the biomass variable of interest, as the retrieval will target growing stock volume (GSV, 
m3/ha) and convert this to above-ground biomass (AGB, Mg/ha) and below-ground 
biomass (BGB, Mg/ha). In principle, European NFIs report all variables in their field data 
while research inventory plots maintained by scientific investigators do mostly register AGB 
only.  
 
An extensive dataset of forest in-situ data across Europe was acquired for the purpose of 
the validation. Plots included in the database underwent a series of quality checks (see 
below). In situ forest data were not used for calibration of the European wide map to 
guarantee full independence from the production process and because the project’s 
biomass map processing chain did not rely on such calibration procedure. The dataset was 
part of the AGBref database, a global collection of forest biomass reference dataset (Araza 
et al. under preparation).  

The following in situ data selection criteria were used for product validation. In situ data 
needed: 

• A proper citable reference source and metadata to assess the procedures and 
quality of biomass prediction. 

• Precise coordinates (4-6 decimals for coordinates in decimal degrees). 

• A census date within ten years from the reference year of the map products to avoid 
temporal inconsistency with the assessed maps. 
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• Measurements of all trees of diameter ≥ 10 cm (or less) were included in the 
estimates. 

• Sites that were not deforested between the year of the inventory and the reference 
year of the biomass map. This assessment was based on the forest loss layers of 
the Hansen dataset (Hansen et al., 2013). 

For map product validation, the response design encompassed different steps leading to 
the assessment of differences between map and plot values and the data harmonization 
procedure is pictured in Figure 3. The plots used in our comparison may have been 
surveyed at a different time than the map to be assessed, they typically differ in spatial 
support (i.e., the area covered by individual plots) from the map pixels and they measure 
different spatial entities (average biomass over a pixel area versus forest biomass within a 
forest plot). Therefore, data harmonization was needed prior to the analysis of differences.  

Differences between the inventory date of inventory plots and the reference year of the 
map were harmonized using updated IPCC growth rates (IPCC 2019). For dealing with the 
distinct sampling populations in terms of both different spatial support and the inclusion of 
non-forested areas within map pixels we multiplied the temporally adjusted plot 
measurements by forest fraction. This forest fraction was computed by putting a 10% 
threshold on a tree cover product (or any other available forest map provided by the user). 
This was undertaken both at pixel level and over larger aggregated blocks. In the rare case 
of more than one inventory plot occurring within a pixel, the average of the adjusted 
biomass per plot was used. The correction for forest fraction was applied only to plots with 
an area below 1 ha. 

 

Figure 12. Overview of reference data harmonization steps for the European wide map. 
The flowchart refers to AGB as the forest variable of interest. 

 
As straightforward way of analysing map vs. plot differences and account for the expected 
differences in the accuracy of plots in different size categories, we introduced a weight to 
reflect the “quality” of the plot data in the accuracy analysis i.e., plot biomass estimates 
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were aggregated with inverse-variance weights so that the resulting reference value 
matched the spatial support of the map (Plot2Map approach, Figure 12). The accuracy 
reporting was done for different biomass ranges.  

Two temporally matched AGBref subsets were prepared: the 2020 AGBref subset was 

used to validate the 2020 map, whereas the 2015 subset was paired with the 2017 map. 

This strategy limited growth-rate mismatch while guaranteeing an adequate sample size 

for error calculation. For validation at 10 km grid level, only those 10 km grid cells that 

contained more than five field plots were selected, in accordance with the "minimum-plots" 

quality flag (Araza et al. 2022). The filtered AGBref locations formed a dense corridor 

across continental Europe, with highest concentrations in France, Germany, Poland and 

the Czech Republic as well as across the Baltic–Scandinavian belt Figure 13). 

 
Figure 13. Overview of the locations of AGBref plots used and compared with the European wide 

map. 
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5. Algorithm descriptions 

5.1 Overview of the section 

In this section, we describe the underlying algorithms of the FCM tools used to predict 
continuous forest structural variables and changes. EO-based features derived from the 
data sources described in chapter 3 (or similar sources) are typically used as predictor 
variables, while in some cases also Airborne LiDAR Scanning (ALS) based features can 
be used.  Some of the algorithms are applicable for predicting one forest attribute at a time, 
while several approaches can produce predictions of multiple forest variables 
simultaneously. Depending on sensor considerations, some tools are suitable or optimal 
for predicting only selected sets of forest variables. A good example is the better suitability 
of optical satellite data to predict forest tree species composition, while radar backscatter 
at longer wavelength should be a better candidate for GSV prediction. 

The algorithms described in this chapter include: 

1. Probability, a forest classification and prediction algorithm. 

2. k-NN, a non-parametric algorithm widely used in forest monitoring. 

3. UNet, a popular convolutional neural network recently introduced for pixel-level 
forest mapping regression task (forest variable prediction from EO images) 

4. BIOMASAR, a physical approach for forest growing stock volume and biomass 
prediction. 

5. Autochange, an image-to-image change detection algorithm. 

6. PREBAS, a process-based ecosystem model for prediction and forecasting of 
biomass and carbon fluxes. 

7. Data assimilation, an approach to combine information from several input sources 
to enable consistent temporal monitoring of forest areas. 

For potential user of the FCM tools, it is important to understand the potential and limitations 
of the available monitoring algorithms. This chapter provides the description of the 
algorithms and observation of the performance of the algorithms achieved in the FCM use 
case demonstrations. 

5.2 Probability 

5.2.1 Algorithm description 

The Probability forest classification and prediction approach (Häme et al. 2001) approach 
includes three phases: 1) Proba Cluster, 2) Proba Model and 3) Proba Estimates. The 
overall workflow of the forest structural variable prediction is illustrated in Figure 14. The 
process is started with the Proba Cluster module, performing image clustering of the input 
images using k-means clustering and maximum likelihood classification. After the 
clustering, the Proba Model module is used to associate the field measurements with the 
clusters. Both spectral statistics and forest variable values are needed for each cluster 
whose number is a parameter value. The forest variable values for each cluster can be 
computed as an arithmetic mean or median of all the field measurements belonging to this 
cluster.  
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Based on earlier experience (Häme et al. 2001; Sirro et al. 2018; Miettinen et al. 2021), 
median value is recommended to derive cluster values for most variables, while mean value 
of the sample plots falling into a given cluster is used for proportional variables (such as 
tree species proportions). The median approach is less affected by potential outlier plots, 
but the average approach produces more reasonable predictions for the proportional 
variables (ensuring them summing up to 100%). 

 

Figure 14. Overall workflow of the forest structural variable prediction using the Probability 
approach. 

 

The resulting model can be analysed by comparing manually cluster spectral distribution 
in the spectral coordinate system and via visual analysis of a satellite image. This manual 
phase allows modification of the model. For instance, clusters representing non-forest may 
lack field observations and consequently reference data values, but their structural variable 
values can be manually set to zero. 

Finally, the Proba Estimates is used to compute a forest-variable prediction for each image 
pixel. A multivariate normal distribution for each cluster is characterized using its mean 
vector and covariance matrix. A cluster membership probability for a spectral vector x is 
computed for five spectrally closest clusters and these probabilities are scaled to sum up 
to 1. These cluster membership probabilities are used as weights when deriving a final 
prediction for a given pixel as a weighted sum of reference data values for five spectrally 
closest clusters (Häme et al., 2001), calculated as: 

where f(x) is the target variable value for spectral vector x, P(c|x) the probability for spectral 
vector x belonging to cluster c, fc the target variable value for cluster c and N the number 
of clusters. 

 

 

𝑓(𝑥) =  ∑ 𝑃(𝑐|𝑥)

𝑁

𝑐=1

𝑓𝑐 (5.2.1.1) 
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5.2.2 Performance 

Overall, the Probability method provided comparable results to the k-NN algorithm in sites 
where both methods were applied and compared. However, the greatest benefit of the 
Probability method is that it can be applied to areas with very limited field reference data 
available (e.g. less than 50 plots). In these situations, it may be impossible to apply the k-
NN method at all, or the output may be of very low quality. The Probability method, on the 
other hand, allows manual investigation and modification of the model, which makes it 
feasible to use it in areas with limited field reference data availability. 

The Probability method was used in five FCM use case demonstrations: Galicia, Ireland, 
Extremadura, Styria and Peru. In addition, it was tested in several test sites during the main 
project. As with all the prediction models, the Probability error metrics varied strongly 
between demonstration sites, depending on the availability and type of field reference data, 
the used EO datasets and EO image quality. Table 5 provides two examples of the error 
levels in two sites, one in Ireland and one in Finland. In both of these examples, a 
combination of Sentinel-1 and Sentinel-2 data was used. The Ireland results can be 
considered exceptionally good, while the Finland results provide a more typical level of 
expected accuracy. 

Table 5. Examples of the error levels of output products produced with the Probability method. 

  

 
G 

(m2) 
D 

(cm) 
H 

(m) 
GSV 

(m3/ha) 
N 

(N/ha) 
Spruce% 

 (%) 
Pine% 

(%) 
Larch% 

(%) 
BL% 
(%) 

Ir
e
la

n
d

 

RMSE 6.87 3.04 3.08 54.47 520.83 25.36 5.57 36.17 22.00 

RMSE % 20.13 18.99 21.16 28.4 30.24 48.06 60.88 162.86 139.33 

Bias -1.00 -0.53 -0.55 -7.85 50.94 6.04 1.93 -16.96 9.04 

Bias % -2.93 -3.31 -3.76 -4.09 2.96 11.45 21.07 -76.35 57.28 

F
in

la
n

d
 

RMSE 6.87 6.23 5.04 85.88  28.01 30.48  26.87 

RMSE % 39.02 37.1 33.37 54.46  87.5 72.27  108.99 

Bias 0.65 -0.16 0.17 8.42  0.63 1.13  -2.1 

Bias % 3.71 -0.95 1.1 5.34  1.98 2.68  -8.51 

*D = diameter, G = basal area, H = height, GSV = growing stock volume, N = density/number of trees, 
Spruce% = proportion of spruce, Pine% = proportion of pine, Larch% = proportion of larch and BL% = 
proportion of broadleaf 
 

Figure 15 illustrates the effects of EO dataset combinations in forest variable prediction 
with the Probability method. The clear improvement in volume prediction with the inclusion 
of TanDEM-X can be seen as a narrower point cloud. The RMSE and RMSE% for this case 
were 73.72 m3/ha and 46.75%, with the relative bias of 2.18%. In comparison, the 
corresponding values using Sentinel-1 and Sentinel-2 were 85.88 m3/ha and 54.46%, with 
the relative bias of 5.34% (Table 5). 
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Figure 15. Scatter plots of GSV prediction with Probability using Sentinel-1 + Sentinel-2 (left) and 
Sentinel-2 + TanDEM-X (right). 

Overall, the experiences with the Probability method gained over the course of the FCM 
project highlight the significance of the available datasets (both reference data as well as 
EO data). The available dataset combinations largely define the level of uncertainty that 
can be reached in a given site. In addition to that, there are naturally variations between 
sites due to ecological and environmental conditions. All this leads to fact that it is very 
difficult to define an expected range of error levels for a given site before tests with the 
available datasets combinations have been conducted. 

5.3 k-NN 

5.3.1 Algorithm description 

The k-Nearest Neighbour method (k-NN; Alt, 2001) is a popular non-parametric and 
distribution-free algorithm for forest monitoring. It has been widely used to predict 
numerous forest structural variables in different parts of the world (Chirici et al. 2016). When 
abundant field reference dataset is available (preferably over 100 field sample plots), it 
provides a fast and efficient tool for conducting forest mapping and monitoring in the target 
area. As a multivariate method it allows predicting several target variables simultaneously, 
thus ensuring also their relationships.  

In the k-NN algorithm, the predictions for the target variable values (such as GSV or AGB) 
are obtained as linear combinations of the attribute values in a set of 𝑘 units selected from 
a reference set of units with known values (Figure 16). The choice of these units is 
determined by a distance-metric defined on the auxiliary variable space. The 𝑘 reference 
units with the smallest distances to the target unit in the auxiliary space are selected. 
Simultaneous prediction of all forest variables distinguishes k-NN from most other 
prediction approaches. It is a non-parametric estimator since predictions can be made 
without estimating any parameters, as well as distribution-free prediction approach 
because predictions can be made without any prior distributional assumptions. 
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Figure 16. Schematic representation of k-NN method for predicting continuous variables (Antropov 
et al. 2017). 

 
The considered reference and prediction units can be forest plots, pixels or stands. The k-
NN predicted vector 𝑦̂𝑝 for pixel  𝑝 is calculated as  

 
(5.3.1.1) 

where 𝑦𝑖 is the vector of observations for the 𝑖-th contributing unit in the reference set, 𝐼 is 
the subset of contributing units that are nearest with respect to the distance metric, and 
𝑤𝑖,𝑝 is the weight of i-th contributing unit calculated as 

where 𝑡 ∈[0,2]. Common choices are 𝑡 = 0, which weights all reference set plots equally 

thus making the prediction a simple averaged vector, and 𝑡 = 1 or 𝑡 = 2 which weight units 
inversely to their feature space distance or distance squared from pixel 𝑝. Popular 
selections for the distance metric are Mahalanobis distance (Kendall & Stewart, 1968) or 
weighted Euclidean distance, 
 

 

(5.3.1.3) 

where 𝑑𝑖,𝑝 denotes the distance in feature space between pixels 𝑖 and 𝑝, and  𝑙 indexes 

the features; and vector 𝑣𝑙 consists of weights associated with 𝑙 individual features. 
 
 
 

  

(5.3.1.2) 
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5.3.2 Performance 

Overall, the k-NN algorithm was found to work reliably and consistently in different types of 
conditions and with a variety of variables, as long as sufficient number of reference field 
plots are available. It is not recommended to use the k-NN approach with less than 100 
reference field plots, unless it has been verified that the plots provide a representative 
sample of the entire target population and range of EO data spectral values. As already 
discussed above, the performance compared to the Probability method is rather similar. 
The benefit of k-NN is the fast and easy implementation. But with small numbers of 
reference field plots the Probablity method is a safer option. 

The k-NN method was used in three FCM use case demonstrations: Romania, Catalonia 
and Norway. In addition, it was used as the benchmark algorithm for making dataset 
comparisons in the testing sites during the main project. The experiences gathered from 
these tests and demonstrations provided valuable information on the usability of the 
algorithm and the level accuracy that can be reached in various ecological and 
environmental conditions, and with a wide range of EO dataset combinations. 

Table 6 provides two examples of the error levels in output products produced with the k-
NN algorithm, one in Romania and one in Catalonia. In both of these examples, a 
combination of Sentinel-1 and Sentinel-2 data was used. The two sites have rather similar 
levels of uncertainty, with relative RMSE ranging typically between 30% and around 50% 
percent depending on the variable, while the bias can be expected to be typically less than 
4%. Both of these two examples fall into the general level of uncertainty observed in the 
cases where the k-NN method has been applied. 

Table 6. Examples of the error levels of output products produced with the k-NN method. 

  

 
G 

(m2) 
D 

(cm) 
H 

(m) 
GSV 

(m3/ha) 
Con% 
 (%) 

BL% 
(%) 

AGB 
(t/ha) 

R
o

m
a
n

ia
 RMSE 15,31 11,11 54,03 220,48 17,16 17,10  

RMSE % 33,6 30,7 22,2 43,9 31,4 37,7  

Bias -1,46 -1,16 -1,76 -7,84 -1,80 0,96  

Bias % -3,2 -3,2 -0,7 -1,6 -3,3 2,1  

C
a
ta

lo
n

ia
 RMSE 8,05 6,21 33,69 51,77 28,24 28,23 42,19 

RMSE % 40,2 32,9 39,5 51,1 84,6 42,4 46,8 

Bias -0,26 -0,27 3,66 -0,57 1,87 -1,77 0,22 

Bias % -1,3 -1,4 4,3 -0,6 5,6 -2,7 0,2 

*D = diameter, G = basal area, H = height, GSV = growing stock volume, Con% = proportion of conifers, BL% 
= proportion of broadleaf and AGB = above ground biomass 

 
The scatter plots presented in Figure 17 reveal generally rather good agreement with the 
reference and predicted forest structural variable values. However, two typical tendencies 
are worth noting. Firstly, the low values are on average overestimated. This can be seen 
exceptionally clearly in the Romanian basal area predictions, as a sharp rise from zero. 
Secondly, all of the scatter plots show a tendency of saturation at higher values of the 
variables. For example, the Catalonia basal area predictions seem to saturate at a level of 
around 30 m2/ha, although some values in the reference data are over 40 m2/ha. Together, 
these two tendencies lead to “averaging” effect of the predictions, meaning that the 
predictions tend to gravitate towards the mean of the reference data. Although this does 
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not affect the average statistics over the interest areas, it is very important to understand 
the effects of the averaging e.g. in modelling context. The output map products typically 
show higher proportion of middle-range forests and underestimate the proportion of low 
and high values. 
 
It is also important to highlight that the averaging tendency is a common feature in all EO 
based forest monitoring, not restricted only to k-NN algorithm. This is particularly true for 
traditional machine learning algorithms. New deep learning approaches, such as the UNet 
method presented in Section 5.4 seem to have high potential in reducing the saturation 
effects.  
 

 
 

Figure 17. Scatter plots of diameter (D) and basal area (G) from Romania (top row) and growing 
stock volume (V) and basal area (G) from Catalonia (bottom row). All produced with k-NN method. 

The extensive k-NN testing allowed also evaluation of the effects of the EO data 
combinations. The tests highlight the importance of finding optimal dataset combinations 
(Figure 18). Particularly the availability of datasets strongly related to the height of the 
canopy (such as TanDEM-X coherence or canopy height models) greatly improve the 
prediction accuracy. The findings of Teijido et al. (2025) support the finding that the effects 
of the dataset combinations are clearly larger than the effects of the methods used in the 
prediction. This is important to keep in mind when selecting the most suitable algorithm to 
use in a particular case. It is more important to first gather the EO and reference datasets 
and then only choose the algorithm that best suit prediction with the available datasets. 
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Figure 18. Growing stock volume (top) and height (bottom) prediction with various EO data using 
the k-NN method. 

 

5.4 UNet 

5.4.1 Algorithm description 

Since recently, deep learning approaches popular in computer vision tasks and consistently 

beating conventional machine learning methodologies across various benchmark datasets, 

got attention in EO based forest mapping. We selected UNet, a variant of fully convolutional 

network, as a baseline deep learning  model for forest variable prediction from multisource 

SAR and optical images. The UNet model was originally proposed for biomedical image 

segmentation and is presently often used in various semantic segmentation tasks. 

The basic UNet (also known as Vanilla UNet) uses convolutional network to extract features 

(Ronneberger et al. 2015). Unlike basic CNN (Krizhevsky et al. 2012), the fully 

convolutional and skip-connection structures allow UNet to extract deeper features of input 

data, maintain good fusion ability at all levels, while keeping the feature map size 

unchanged, suggesting it an excellent choice for pixel-level classification (semantic 

segmentation) and regression tasks. 

The overall structure of UNet is symmetric, similar to encoder–decoder, shown in Figure 

19 below. The encoder is responsible for feature extraction, and the decoder restores the 

feature map to the original size. Each box in the UNet indicates a feature map, where the 

corresponding size is denoted near the boxes. The blue arrow indicates a double-

convolution structure as a core unit of the model, composed by cascading a two-

dimensional convolution, batch-normalization and ReLu activation. The two-dimensional 

convolution captures features at current level and an activation layer projects the obtained 

feature map to a nonlinear feature space. 

A 2×2 pooling downscales the original feature map to half of its spatial size, expanding the 

receptive field for the subsequent double-convolution. As the model goes deeper, the larger 

receptive field means more global information of the input data can be captured. 
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In decoder, the green arrow indicates the upsampling operation to restore the size of 

feature maps. As the pooling operation discarded some details, applying skip-connection, 

represented by grey arrows, the shallow feature maps are concatenated to deep features 

recovered from upsampling. The final arrow represents a 1×1 convolution projection 

function, which maps the last feature map to the target space. The 1×1 convolution kernel 

size preserves the spatial size and enables pixel-level prediction. 

 

  

Figure 19. Basic UNet model structure after Ronneberger et al (2015) and the overall UNet model 
pretraining pipeline for EO based forest variable prediction. 

 

The model can be effectively trained using spatially explicit representations. In scenario 

when forest plots are available, training from scratch typically leads to unsatisfactory results 

not better than with conventional pixel-based methods as spatial representations are not 

effectively learned. In this situation, and effective approach is pretraining a general model 

using fully segmented labels, followed by model finetuning with forest plots. The model can 

be further enforced with attention mechanisms (Ge e al. 2022) or used as a part of semi-

supervised contrastive regression approaches (Ge et al. 2023b). The UNet algorithm has 

also shown good results in transfer learning tasks with forest plot data (Ge et al. 2023). 

 

5.4.2 Performance 

In the FCM project, the UNet algorithm was used to produce the demonstration products 

in the Catalonian and Norwegian use case areas. In addition, the algorithms were tested 

in several testing sites, including training and finetuning the models with different types of 

datasets. Two main approaches were evaluated: 1) training and application of the model 

in target area and 2) geographic or temporal transfer of the model to target area or year. 

The findings on the performance of these two types of applications are highlighted in this 

section to illustrate the level accuracy that can typically be reached with the model in 

different situations. 

Table 7 provides an example of error level reached in the Norwegian demonstration area, 

with a model trained using ALS based wall-to-wall forest variable layers and multi-source 

EO data (Sentinel-2, Sentinel-1 and PALSAR-2 mosaic). Comparison to k-NN results from 

the same use case reveal consistently better RMSE and R2 metrics of the UNet based 

results. Particularly the large difference in the R2 values indicate larger explaining power of 

the UNet algorithm. 
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Table 7.  Examples of the error levels of output products produced with the UNet method, compared 
to corresponding k-NN results. 

 UNet k-NN 

 D G H V D G H V 

RMSE 5.50 8.56 3.33 79.92 5.57 9.44 3.81 91.27 

RMSE % 35.3 51.9 28.4 69.4 36.0 58.2 32.6 80.8 

Bias 0.84 1.27 0.56 12.49 0.05 0.06 0.11 0.77 

Bias % 5.4 7.7 4.8 10.9 0.3 0.4 0.9 0.7 

R2 0.32 0.64 0.61 0.63 0.13 0.5 0.42 0.45 

*D = diameter, G = basal area, H = height, V = growing stock volume 

 

However, the UNet based results also have significant bias in the Norwegian use case, 

compared to the nearly unbiased k-NN results (Table 7). Depending on the use case, this 

may or may not have significant effect on the usability of the method. For example, if the 

maps are used as input to model-assisted estimation, the bias will be corrected in the 

estimation phase. The bias is also visible in the density scatter plots, which otherwise show 

high agreement between the predicted and the reference values (Figure 20). 

 

  

Figure 20. Height (left) and growing stock volume (right) density scatter plots in the Norway 
demonstration use case for UNet algorithm. 

For operational application of the UNet models, a model transfer (either geographic or 

temporal) is often required. This is because suitable training data may not be available in 

the target area. In this case, a model trained in similar ecological conditions can be 

transferred to the target area by finetuning it with a small number of plots. Model transfer 

does not necessarily affect negatively the accuracy of the results. To illustrate the 

behaviour of models before and after fine-tuning, Table 8 presents height prediction results 

with a UNet model that was trained in Finland with ALS based wall-to-wall forest variable 

maps and applied in Norway without (“blind”) and with fine-tuning (“fine-tuned”). The results 

were compared to k-NN and a UNet model trained with Norwegian ALS based wall-to-wall 

forest variable maps (“SR16”). 



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

47 
 

Table 8.  Examples of the error levels for height prediction with various UNet model training options 
and the benchmark k-NN method. See text above for more details. 

 Height 

 

k-NN 

UNet 

 Blind 
Fine-
tuned 

SR16 

RMSE 36.05 46.73 31.42 31.38 

RMSE % 31.7 41.1 27.6 27.6 

Bias 3.66 0.31 8.59 7.22 

Bias % 3.2 0.3 7.5 6.3 

R2 0.44 0.06 0.58 0.58 

 

It can be seen that the model finetuning brought the results to the same level that could be 

reached with the model trained with local reference data. Figure 21 illustrates how model 

transfer changes the shape of the prediction scatterplots, compared to “blind” application 

and a model trained with local reference data. 

 

   

Figure 21. Density scatter plots of height prediction in Norway with “blind” application of Finnish 
model (left), fine-tuned Finnish model (centre) and Norwegian model (right). 

 

Overall, comparisons between k-NN and UNet based forest structure maps revealed 

consistently better error metrics for the UNet models. Furthermore, the maps produced with 

UNet models resulted in a more natural-looking distribution of forest variable values, with 

clearer distinction of adjacent forest stands (Figure 22). It also enabled prediction of higher 

volume and biomass, reducing the saturation effects observed in volume and biomass 

predictions. The improved high-volume prediction was particularly clear in stand-level 

accuracy assessment conducted in the Norwegian use case demonstration (Figure 23). It 

is important to realise that all of the reference stands had volume above 120 m3/ha. There 

is relatively good agreement in the UNet maps up to around 400 m3/ha, while saturation 

effects start to be very clear in the kNN maps already from around 250 m3/ha onwards. 

 



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

48 
 

  

Figure 22. Volume maps produced with UNet (left) and k-NN (right). Grey indicates non-forest area. 
Volume (green) range 0-600 m3/ha.  

 

 

 
Figure 23. Observed vs. predicted mean volume per stand for kNN and UNet-based maps. 

 

A potentially negative aspect of the UNet algorithm is that it is developed and run 

individually for different variables. This may, in theory, lead to discrepancy between the 

forest structural variables. This is also the case with model transfer, as the models for each 

forest structure variable are fine-tuned separately. The model transfer to the target area is 

at its best a very effective method to utilise existing UNet model in the area of interest, 

without the need of extensive field measurement campaigns. However, it is recommended 

that the representativeness of the plot data used in the fine-tuning, as well as the 

consistency of the results between forest structural variables is evaluated carefully. 
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5.5 BIOMASAR 

5.5.1 Algorithm description 

Prediction of forest biomass density, defined either in the form of structural parameters 

such as Growing Stock Volume (GSV, unit m3 ha-1) or in the form of organic mass such as 

Above Ground Biomass (AGB, unit Mg ha-1), requires observations of both the horizontal 

(i.e., tree density) and vertical (i.e., height) properties of a forest. To predict the mass, in 

addition, tree form factors and wood densities are needed. Remotely sensed data from 

space do not offer such a variety of observations. Therefore, biomass can only be inferred 

by means of mathematical models, which are tailored to adapt to remotely sensing data 

available with the aid of reference biomass data from ground surveys. This aspect becomes 

even more crucial when available measurements have limited sensitivity to biomass, which 

is the case for satellite missions with imaging instruments currently in operation. 

The unavailability of spatially dense datasets of reference biomass measurements for most 

regions of the world implies that model-based biomass mapping from satellite remotely 

sensed data of large areas, e.g., continents, requires strong generalizations of local model 

training. Eventually, this results in strongly biased estimators of biomass (Mitchard et al., 

2014, Avitabile et al., 2016). An approach that can overcome such limitations is a self-

calibrating method. Rather than training the prediction model with biomass measurements, 

the model parameters are predicted by deriving statistical parameters of the satellite 

observations (SAR backscatter in our case) for given forest conditions. Herewith, the 

biomass prediction model linking biomass to satellite data makes use of auxiliary remotely 

sensed datasets (e.g., canopy density, LiDAR-based metrics, land cover) together with 

statistics predicted from forest inventory data (Santoro et al., 2011, Cartus et al., 2012). 

Despite several approximations in how the model is trained, the performance of such 

calibration methods, referred to as BIOMASAR, was found comparable to the performance 

achieved when the models were trained with in situ measurements (Santoro et al., 2011). 

This suggested the application of BIOMASAR for large-scale mapping of biomass using 

spaceborne SAR backscatter observations (Santoro et al., 2015). More recently, such 

methods have been implemented to generate the global datasets of GSV and AGB 

provided in the framework of ESA’s GlobBiomass project (Santoro et al., 2021a) and CCI+ 

Biomass project (Santoro et al., 2024a). 

The BIOMASAR retrieval approach can be summarized as follows: 

•    Input: SAR backscatter (e.g., from Sentinel-1 or ALOS-2 PALSAR-2) 

•   Retrieval model: Water Cloud Model integrated with structural functions (allometries) 
to predict GSV 

•    Model training: self-calibration 

• Feature selection: weighted average of GSV predictions from individual SAR 
backscatter observations 

  
Prediction of GSV from the SAR backscatter images is based on the method proposed in 
Santoro et al. (2021b). The relationship between the SAR backscatter and GSV is 
expressed with the physically-based Water Cloud Model with gaps (Askne et al., 1997) in 
Eq. (5.5.1.1). This model described the backscattered intensity from a forest as a function 
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of the backscatter from the forest floor through gaps in the canopy, the backscatter from 
the forest floor attenuated by the canopy and the backscatter from the canopy. 

 (5.5.1.1) 

 

The model parameters 0
gr and 0

veg represent the backscattering coefficient of the ground 
and vegetation layer, respectively. Ttree represents the two-way tree transmissivity and is 

expressed as with  being the two-way attenuation per meter through a tree canopy and h 
being the depth of the attenuating layer, which is assumed to correspond to the canopy 
height. 

The model expresses the forest backscatter as a function of η and h, i.e., canopy density 

and height. To establish a dependency upon GSV, the two variables are replaced with 

forest structural models relating canopy density to canopy height in Eq. (5.5.1.2) (Santoro 

et al., 2024b), and h to GSV in Eq. (5.5.1.3) (Santoro et al., 2024b). The estimation of the 

model parameters q, a, b, relies on spaceborne LiDAR and statistics of GSV from NFIs 

(Santoro et al., 2024b). 

 

 
(5.5.1.2) 

 (5.5.1.3) 

 

In this way, the retrieval model expressed the SAR backscatter as a function of GSV only: 

 

 
(5.5.1.4) 

 

To predict stem volume from a measurement of the SAR backscatter, the model 

parameters 0
gr, 0

veg and  need to be computed first. The prediction is implemented in 

the form of a model self-calibration not requiring in situ data as part of a training set. Self-

calibration means that the backscatter of pixels in correspondence of areas with small 

andlarge canopy densities (e.g., based on the Global Forest Change dataset by Hansen et 

al., 2013) are extracted and the median backscatter value for each class is calculated. The 

value for small canopy densities is associated with 0
gr. The value for large canopy 

densities is associated with “dense forests” and, therefore, needs to be compensated for 

residual ground contribution to obtain the value representative of the backscatter from the 

canopy only, i.e., 0
veg. The self-calibration is undertaken with a sliding window approach 

and separately for each image to adapt the predictions of the model parameters to the local 

conditions of the forest at the time of image acquisition. For a detailed description of the 

implementation in this project, it is referred to Santoro et al. (2024b). 

The key feature of the BIOMASAR approach is the combination of GSV predictions from 

multiple SAR backscatter observations because it improves the accuracy of the prediction 

compared to a single-image prediction regardless of the SAR dataset (Santoro et al., 2011; 

Cartus et al., 2012). Individual predictions of GSV, Vi, are combined into a final value, Vmt, 

with a weighted average (Kurvonen et al., 1999). 
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(5.5.1.5) 

Each weight wi = (0
veg,i - 0

gr,i) is defined as the difference between the predictions of the 

model backscatter coefficients for the specific image, i. This approach indeed favors 

predictions corresponding to images acquired under conditions that maximize the 

sensitivity of the backscatter to stem volume (Santoro et al., 2011; Cartus et al., 2012). 

An additional step is pursued if several SAR datasets are available (e.g., Sentinel-1 and 

ALOS-2 PALSAR-2). In this case, each set of SAR observations is piped into a specific 

BIOMASAR module to exploit frequency-specific strengths and to reduce the impact of 

systematic weaknesses of each dataset on the final predictions. The dataset-specific 

predictions of biomass from Eq. (5.5.1.5) are eventually merged with the aim of reducing 

biases and uncertainties. The merging consists of a weighted average of e.g., the C- and 

L-band GSV predictions; the procedure is outlined in Santoro et al. (2024b). When SAR 

images are available for several years, yearly estimates of GSV can be generated. Merging 

of the C- and L-band datasets is then implemented on a year-to-year basis, i.e., the weights 

are defined for each year. To harmonize the computation, the estimation of the weights 

relies on a cost function that is minimized across years following the procedure described 

in Santoro et al. (2024a). 

In principle, the BIOMASAR approach can be implemented to predict AGB instead of GSV 

by plugging in an allometry that relates canopy height to AGB as currently undertaken in 

the CCI Biomass project, where AGB is the forest variable of interest (Santoro et al., 

2024a). The reason for pursuing a prediction of GSV is that for the European forest 

landscape, GSV is the primary forest variable of interest. AGB, BGB and carbon-related 

variables can then be predicted from GSV by simple scaling. Here, we introduce two 

approaches. 

Stem volume can be converted to stem biomass, SB, with an estimate of the wood density, 

WD (unit: g/cm3) in Eq. (5.5.1.6). SB can then be used to predict the biomass density in 

branches, BB, foliage, FB, and roots, RB, (Thurner et al., 2014) to obtain an estimate of 

total biomass with Eq. (5.5.1.7). In other words, total biomass represents the sum of the 

above- and below-ground biomass. 

 (5.5.1.6) 

 (5.5.1.7) 

For the wood density, we propose to use average values per leaf type reported by Thurner 

et al. (2014) because they are based on extensive datasets from European forests. The 

biomass of branches, foliage and roots is modelled as a function of stem biomass with a 

power-law function (Thurner et al., 2014). Again, we shall use the coefficient estimates 

proposed by Thurner et al. (2014) for broadleaves and conifers because they are based on 

extensive measurements from European forests. For the stratification of the landscape by 

leaf type (broadleaves and conifers, i.e., either needleleaf deciduous or needleleaf 

evergreen), we shall use a dataset contemporary to the SAR observations and with similar 

spatial resolution. 

AGB can also be estimated from GSV with a simple Biomass Conversion and Expansion 

Factor (BCEF). The BCEF is defined as the product of wood density and the stem-to-total 
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biomass expansion factor representing the proportion of above-ground biomass to the stem 

biomass (Santoro et al., 2021a). 

 

 (5.5.1.8) 

A global raster dataset of BCEF estimates was generated from extensive measurements 

of wood density and biomass proportions (Santoro et al., 2021a). The dataset was found 

to be accurate across almost the entire range of BCEFs worldwide. The major limitation of 

this dataset is the limited spatial resolution (1 km), which hinders reproducing small-scale 

spatial patterns of species composition. For this reason, the approach with the BCEF is 

only introduced to benchmark the approach proposed by Thurner et al. (2014). 

 
5.5.2 Performance 

5.5.2.1 BIOMASAR model calibration 
 
The BIOMASAR approach relies on a model relating the forest backscatter to canopy 
density and height, and on two allometries that relate canopy density, canopy height and 
growing stock volume, to allow for a direct prediction of the latter from SAR backscatter 
measurements.  

For the allometry that relates canopy density and height (Eq. 5.5.1.2) we produced 
estimates of the model parameter q from ICESat GLAS metrics of the two variables on a 
1° tiling basis as currently implemented in the CCI Biomass algorithm (version 6). We also 
tested the set of estimates of the model parameter obtained with the same LiDAR dataset 
but different stratification algorithm (Kay et al., 2021). These estimates were characterized 
by a larger variability of values and caused frequent over- or underestimation of the 
modelled backscatter at the test sites, thus being deemed as less reliable. Compared to 
the previous version of this document, our new set of estimates replaces the dataset therein 
presented and based on Santoro et al. (2022).  

For the allometry that relates canopy height and GSV (Eq. 5.5.1.3), we first compared the 
results derived purely from forest inventory plot data with those obtained from ICESat-2 
LiDAR (height, RH98 metric) and inventory statistics (GSV) (Figure 24). The relationship 
between the two variables was established at the level of provincial averages because of 
the weak correlation at the level of individual inventory plots. This comparison could be 
undertaken in six European countries for which plot data from national forest inventories 
are freely available. The strong similarity of the ensemble allometry (Figure 24) reinforces 
the use of provincial statistics, published by most NFIs in Europe, and averages from 
ICESat-2 LiDAR canopy heights. Figure 24, however, shows different relationships 
depending on the country. To accommodate for the spatial variability of the association 
between canopy height and GSV, we stratified the ICESat-2 and provincial GSV statistics 
by ecoregion (Dinerstein et al., 2017), leading us to four allometric functions that describe 
the relationship between canopy height and GSV across the European forest landscape 
(Figure 25). 



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

53 
 

  

Figure 24. Observations of average tree height and GSV from NFI data for administrative units from 
six countries and corresponding model fits (dashed curves) using Eq. 5.5.1.3 (left panel). 

The black solid curve represents the model fit to the ensemble of all observations. For the ensemble, the 
plot shows the coefficients and the SE of the regression. In the right panel, we show observations of 

average ICESat-2 canopy height and GSV from NFI data for administrative units from those six countries. 
The black solid curve represents the fit of Eq. 5.5.1.3 to the ensemble of all observations. 

 

 
 
Figure 25. Measurements of canopy height from ICESat-2 data averaged at the level of NFI units and 

corresponding GSV value published by the NFIs stratified by ecoregion (Dinerstein et al., 2017). 
In each panel, the curve represents the fit of Eq. 5.5.1.3 to the measurements. Coefficients of Eq. 5.5.1.3 

and the standard error of the regression are visualized in the upper left corner of each panel. 

Validation of the BIOMASAR approach was undertaken at the sites of Catalonia, Finland 
N, Finland S and Romania for which extensive observations of GSV from field 
measurements were available. To validate the self-calibration approach, we compared the 
modelled backscatter from Eq. 5.5.1.4 with the same modelled backscatter obtained with a 
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least squares regression to the training dataset at each site and for each date of the 
Sentinel-1 and ALOS-2 datasets. In Figure 26, the scatter plots show the estimates of the 

WCM parameters 0
gr and 0

veg for the sites of Catalonia and Finland N and the Sentinel-
1 datasets. These were the only sites characterized by moderate to high correlation 
between backscatter and GSV observations. For the Finnish site, we observe strong 
agreement between estimates whereas for Catalonia, there appears to be a systematic 
offset depending on polarization and parameter. We explain the discrepancy as a 
consequence of the fitting procedure based on inventory data, which does often not 
generate a realistic estimate. This result is relevant in the overall context of deeming 
reliable such model fits based on ground reference data. 

 
Figure 26. Scatter plots comparing the estimates of 0

gr and 0
veg from the regression fit to the 

observations (x axis) and from the self-calibration (y axis) for VV- and VH-polarized Sentinel-1 
images over the test site of Catalonia and Finland N (Santoro et al., 2024b). 

The dashed line represents the identity line. 

 
The same analysis was undertaken for the time series of ALOS-2 observations, here 
represented by the backscatter in the yearly mosaics produced by JAXA (2015-2020). The 
individual ALOS-2 PALSAR-2 used for the pan-European map were not available at the 

time of this study. The estimates of 0
gr and 0

veg from the two model fitting procedures 
show an overall strong similarity except for the HV-polarized dataset over Catalonia where 
the external calibration generated slightly higher values than the traditional regression 
based on ground reference data. We have already identified such an issue with the 
Sentinel-1 data and explain the discrepancy because of the potentially unrealistic values 

associated to 0
gr and 0

veg which were due to the low correlation between backscatter and 
GSV. Our analysis demonstrated the importance of retrieving GSV from multiple L-band 
observations. 
 
The accuracy of the GSV estimates obtained with the BIOMASAR approach and with the 
traditional model training procedure based on reference GSV values is reported with 
respect to a set of inventory plots that were not touched during the model development and 
calibration phase. The metrics are calculated at plot level. GSV class medians are also 
displayed in the figures to visualize the tendency. The GSV estimates were obtained for 
each SAR dataset and then merged to obtain a final value that may reduce sensor-specific 
over- or under-estimations. 
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Figure 27. Scatter plots comparing the merged estimates of GSV from the WCM trained with ground 

refence data (“Training”, left panels) and from the WCM calibrated with the BIOMASAR algorithm 
(“Calibrated”, right panel) to the GSV from the inventory data for the test site of Catalonia. 

Crosses illustrate the comparison at the plot level. Circles represent the median value of the estimated GSV 
for a given range of GSV from the inventory. The dashed line represents the identity line. 

 
The merging weights differed depending on the test site. The weighting factor for the L-
band GSV estimates ranged between nearly 0 (Finland N), 0.23 (Catalonia), 0.54 
(Romania) and 0.9 (Finland S). In general, the results obtained with BIOMASAR were on 
average reliable and only slightly poorer compared to those obtained by fitting the WCM to 
the reference measurements of GSV (Figure 27). For Catalonia, the weighting was geared 
towards the C-band dataset, which was correct given the poorer performance of the 
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retrieval with L-band. For Finland N, the weighting excluded the L-band estimates although 
the retrieval results were of higher quality. This is a shortcoming of how the normalization 
procedure for the weight was implemented for this analysis. The set of ws values were 
obtained for the four sites only and Finland N was characterized by the lowest of the values 
resulting in a normalized value of 0. For Finland S, the L-band estimates were preferred, 
which agrees with the superior performance of the retrieval compared to C-band. Finally, 
for Romania, the weights were of similar magnitude; however, given the lack of correlation 
between GSV and backscatter, these results are not relevant. Indeed, using the same 
model but different calibration approaches led to completely different retrieval results, a 
consequence of the insensitivity of the backscatter to GSV. 
 
The uncertainties of the SAR and LiDAR measurements and of the individual model 
parameters quantified by their standard deviations were propagated to obtain an estimate 
of the GSV’s uncertainty for a given SAR observation. For each band, the GSV uncertainty 
was then expressed as the weighted average of the individual uncertainties and accounted 
for the temporal correlation of the errors. Finally, the uncertainty of the merged GSV was 
computed as the weighted average of the band-specific uncertainties. We visualize the 
uncertainty of the GSV as a function of the estimated GSV in Figure 28 for Catalonia, 
Finland N and S. The results for Romania are omitted because of the overall very high 
uncertainty (> 100% of the estimate). The uncertainty at the pixel level was considerable 
and differed between sites. We attribute this to the sensitivity of the backscatter to GSV, 
which was more pronounced in Finland N than elsewhere, and to the temporal correlation 
of errors which was remarkable at all sites.   
 

 
 

Figure 28. Standard deviation of GSV estimates as a function of the estimated GSV at plot level for 
the sites of Catalonia, Finland 1 and 2. 

 
BIOMASAR requires a set of auxiliary parameters such as canopy density, maximum GSV 
etc. In the development phase, the values were mostly a constant and reflected the local 
conditions of each site. For the implementation on Forestry TEP, where the mass 
processing was run, the auxiliary information consisted of raster datasets derived from EO 
data expressing per-pixel values of e.g. canopy density, canopy height, maximum biomass, 
land cover type etc. Indeed, none of these parameters can be detailed at the spatial 
resolution of the pan-European dataset (20 m) with in situ measurements. The accuracy of 
each of those datasets has therefore an impact on the accuracy of the pan-European data 
product. 
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Figure 29 shows the comparison of plot-based and map-based values of GSV for the same 
four sites as above. Compared to the development phase, the results have somewhat lower 
accuracy. For the two Finnish sites, the layer of maximum GSV based on ICESat-2 heights 
constrained the retrieval to an interval of GSV values smaller than the real one, causing 
underestimation at high GSV levels. The somewhat bended relationship between plot- and 
map-based values was due to imperfections in the allometry relating canopy height and 
canopy density. This was based on ICESat-1 data which were acquired primarily under 
leaf-off conditions, thus biasing such model. For Catalonia, the errors were explained as a 
consequence of inaccurate maximum GSV estimates. The results for Romania were 
caused by imperfect calibration of the Water Cloud Model when implemented on Forestry 
TEP. The errors were introduced when selecting “ground” pixels, many of these having 
been neglected as a consequence of the strong filtering of land cover types implemented 
in the Forestry TEP processing.  
 

  

  
 
Figure 29. Scatter plots comparing the map-based estimates of GSV from the BIOMASAR approach 

implemented on FTEP for the pan-European processing with ground refence data. 
Crosses illustrate the comparison at the plot level. Circles represent the median value of the estimated GSV 

for a given range of GSV from the inventory. The dashed line represents the identity line. 

 
The results at plot level indicate that the pan-European processing captured the spatial 
distribution of GSV (and thereof of AGB and BGB) but had substantial issues at the spatial 
resolution of the maps. Aggregating the maps to coarse spatial resolution confirmed this 
indication. Figure 30 shows an example for the Romanian site where plot-based and map-
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based average values of GSV are compared at different aggregation levels. Much of the 
variance affecting the full spatial resolution (Figure 29) disappeared after averaging as also 
confirmed by the R2 value, which increased from 0.15 at full resolution to 0.76 at 1 km and 
close to 1 at coarse resolutions. 

 
 

Figure 30. Scatter plots comparing average values of GSV from the pan-European map product and 
from the dataset of in situ measurements for the site of Romania at different levels of aggregation. 

 
5.5.2.2 Output product accuracy 
 
The previous section provided description of the model calibration results and evaluation 
of the performance of the model. In addition to this, the resulting European volume and 
biomass maps were validated by comparing them to published provincial level NFI statistics 
and by conducting an independent accuracy assessment with a set of NFI plots from 
countries across Europe (as described in Section 4.6). 
 
The provincial level analysis was conducted by comparing averages from FCM map data 
values of GSV at the level of individual provinces with values reported by European NFIs 
in their periodic reports on forest resources (Figure 30). Even if the GSV statistics by the 
NFIs were not always coincident with the map-based values, this comparison is indicative 
of the quality of the FCM data product. For Nordic and Mediterranean countries, the 
agreement was strong. For some countries in Central Europe (Germany, Poland, Czech 
Republic, Hungary), the map underestimated GSV. Here, we identified an issue with the 
land cover definition used to select “ground” pixels when calibrating the Water Cloud Model. 
The processing masked out “pastures” according to the Copernicus High Resolution Layer, 
which reduced substantially the number of pixels on which the model could be calibrated 
and biased it. Strong topography caused underestimation in Switzerland. Strong land 
fragmentation and country-specific forest definitions explained the discrepancies in the 
United Kingdom, Ireland and the Netherlands. 
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Figure 31. Comparison of GSV averages from this study with values published by European National Forest Inventories. 
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The independent accuracy assessment with a set of NFI plots was conducted in 10 km 

aggregates (as described in Section 4.6). Results of the analysis are presented in Figure 

32. The two graphs show high consistency between the two annual maps. The patterns of 

the scatter plots are very similar in both years, indicating inter-annual consistency in the 

accuracy of maps.  

 
 

Figure 32. Validation results of the 2017 (left) and 2020 (right) European wide biomass maps. 

 
The reference and mapped values have close agreement up to about 250 Mg/ha for both 

maps. Systematic underestimation emerges near 300 Mg/ha, driven mainly by high-volume 

forests in mountainous Croatia which could also reflect conservative masking rules applied 

during FCM backscatter calibration, as documented earlier in this ATBD. Moreover, the 

underestimation in high-biomass and temporal noise may be linked to sparse ALOS-2 

coverage and remain as target for further improvement. 

 

More detailed analysis of the independent product validation can be found in the product 

“Delivery note” made available with the maps. 
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5.6 Autochange 

5.6.1 Algorithm description 

The Autochange change detection approach (Häme et al. 2020) is a bi-temporal change 

detection method developed at the VTT Technical Research Centre of Finland. The method 

provides change intensity and type as outputs. It is assumed that the majority of the image 

area does not include changes of interest to the user. 

The computational flow of the process is illustrated in Figure 33. To reduce time, the 

process uses a sample of pixels for clustering. The sample consists of mean spectral 

vectors of groups of pixels representing relatively homogeneous ground targets. The 

homogeneity is tested by computing the standard deviation vector (alternatively coefficient 

of variation) of each n x n pixel group in both images. A sample of m groups with lowest 

non-zero deviations is selected for the clustering. The zero deviation groups are rejected 

because they can represent a multiplied single pixel due to resampling. Use of the standard 

deviation as a criterion favours low-reflectance groups that typically represent mature 

forests. They are over-represented in the sample, which improves the performance of the 

algorithm in the detection of forest cuts. 

Clustering is performed by k-means on the selected homogeneous pixel groups (later 

observations) of the pre-change image to compose primary clusters (image representing 

the state at the start of monitoring). The image spectral bands are standardized before 

clustering because the k-means algorithm uses the Euclidean distance and is thus 

sensitive to the dynamic range of a spectral band. The primary clusters are sorted by their 

‘biomass’ index (BM), based on their reflectance of the red band, which has a relatively 

high correlation with the biomass (NRC 1970). 

The primary clusters are used for two purposes: to acquire general information about the 

land cover before the changes, and to set the initial state for the second level clustering of 

the post-change image (image representing the state at the end of monitoring). 

The observations of the post-change image are labelled with the cluster numbers of the 
primary clusters without performing a new clustering. The spectral intensity distribution of 
a primary cluster will consequently become heterogeneous if a change has occurred 
between the moments of acquisition of the two images. A secondary clustering to n sub-
clusters is performed within each labelled primary cluster of the post-change image. This 
extracts the observations that represent change to specific secondary clusters. 
 
The Euclidean distance between each secondary cluster and its post-change primary 
cluster is computed as the length of the spectral mean vector and represents the magnitude 
of change (CM). The CM gets a value of 100 if the Euclidean distance of a secondary 
cluster to its primary cluster of each spectral band is as large as the standard deviation of 
the CM band. The benefit of computing the change magnitude from the post-change image 
only is that the pre- and post-change images do not have to represent identical spectral 
bands or even do not have to be acquired using the same instrument. 
 
The change type is computed using two spectral features: the biomass index (BM) and the 
Normalized Difference Vegetation Index (NDVI), producing four change types: 

1. BM decrease & NDVI increase: can indicate, e.g. conifer tree removal with 
remaining broad-leaved trees and grasses 
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2. BM decrease & NDVI decrease: typical change due to clear-cuts 

3. BM increase & NDVI increase: biomass growth 

4. BM increase & NDVI decrease: biomass growth with associated decrease in 
broadleaved trees or shrubs and grasses. Such change can be associated with 
silvicultural operations on conifer regeneration sites, for instance. 

 

 
Figure 33. Flowchart of the Autochange change detection method. 

 
 
The outputs from processing include: 
 

1. Primary cluster mean intensity vector from the pre-change image. 

2. Change magnitude, computed using the primary and secondary cluster mean 
intensity vectors from the post-change image. 

3. Change type, computed using the primary and secondary cluster BM and NDVI 
means from the post-change image. 

 
The final change classification is compiled by applying simple logical operations to the 
three-band output image. For instance, accepting only primary clusters from the pre-
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change image that reflect mature forest, change types that indicate biomass decrease and 
selecting a threshold for change magnitude produces mapping of clear-cut areas. 
Alternatively, external forest masks can be used to identify changes in the forest area. 
 
5.6.2 Performance 

The use of the Autochange algorithm involves selection of a few key parameters including 
the 1) image bands to be used, 2) number of primary clusters, 3) number of secondary 
clusters and 4) sample size. The selection of the parameters directly affect the performance 
of the algorithm and may differ depending on the goals of the change detection (e.g. the 
type changes the user is most interested in). Optimal combination of the parameters need 
to be sought case by case. The following list discussed the main points of the parameter 
selection affecting the performance of the algorithm. 

1. Different types of changes are reflected differently in the bands available in the EO 
datasets used. For example, in the FCM project it was important to find a 
combination of image bands that best reflect changes (particularly reduction) of 
biomass, tolerate variation in seasonal and atmospheric properties inside images 
and are applicable in different geographic regions. 

2. The primary clusters form homogeneous land cover classes in the pre-change 
image. If a forest mask applied as a mask in change detection, all primary clusters 
represent forest types and the number of primary clusters can be reduced. The aim 
is to use optimal number of clusters to separate different forest types but also to 
avoid too large number of clusters to enable sufficient number of observations in 
each cluster. 

3. The secondary clustering is performed within the primary clusters in the post-change 
image. The number of the secondary clusters affect the separation of different land 
cover types in the later image. The larger the number of clusters the smaller the 
number of observations in each cluster. Very large number of secondary clusters 
may result with clusters that have only few observations and affect negatively the 
results. Typically, when aiming at detecting only large magnitude changes like clear 
cuts, small number of secondary clusters can be used. When aiming at detecting 
also subtle changes the number of secondary clusters is often increased. Also, for 
example remaining traces of clouds in the later image affect the secondary 
clustering, which needs to be considered when selecting the number clusters.  

4. It is important that the initial sample for clustering includes observations from the 
changed areas, although their proportion of the total area is small. Therefore, the 
parameter defining the size of the initial sample should ensure large enough number 
of observations for the clustering. However, too large sample would include 
observations that represent heterogenous land cover such as border areas between 
forest and open land.  

As already mentioned above, the selection of the key parameters have a strong effect on 
the performance of the change detection. Therefore, only general indications of the 
suitability of the algorithm for a given change detection purpose can be given. As an 
example of the performance of the Autochange algorithm, we present here the parameters 
and example output products from the European-wide change detection 2020-2021 
conducted during the main phase of the FCM project. The parameter set used in the 
detection is defined in Table 9. The input EO data were the Sentinel-2 composite images 
presented in Chapter 3. 
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Table 9. Set of parameters used for European wide application of Autochange. 

Parameter Explanation Values 

hmg_threshold Number of observations 2000000 

limits 
Intensity limits for band 10 (quality band) of pre-

change image 
10 4001 10000 

limits2 
Intensity limits for band 10 (quality band) of post-

change image 
10 4001 10000 

hmg_size Sample box dimension of observations in pixels 2 

cluster_count Number of initial clusters 30 

cluster_count2 Number of secondary clusters 5 

bands Bands used in the pre-change image 3 5 7 (B04 B08 B12) 

bands2 Bands used in the post-change image 3 5 7 (B04 B08 B12) 

 

   

   

   
Sentinel-2 2020 Sentinel-2 2021 Change magnitude 

 
Figure 34. Sentinel-2 true colour composites 2020 and 2021 and corresponding change magnitude 

for the pixels whose change type indicates biomass decrease. 
Results have been computed with the parameters used in the European wide demonstration (Table 9). 

Upper row in Romania, middle row in Ireland and bottom row in Sweden. Area 1 x 1 km. 
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Figure 34 shows examples of the change detection results in Romania, Ireland and 
Northern Sweden using the parameters defined in the Table 9. The selection of the 
parameters for the European wide mapping needed to be done conservatively, taking into 
account the variation within the continent. For smaller area analyses, parameters can be 
chosen more specifically to highlight particular types of changes in the particular conditions 
of the interest area. Nevertheless, even with the European wide parameters one the CM 
layers provide a range of different magnitudes, varying from the high values in the clearcut 
areas to lower values in areas where more subtle changes have taken place. 

5.7 PREBAS 

5.7.1 Algorithm description 

PREBAS is a semi-empirical forest growth simulator (Mäkelä 1997; Valentine and Mäkelä 
2005; Peltoniemi et al. 2015; Minunno et al. 2019), to predict forest carbon and water fluxes, 
current biomass and dimensional growth of even-aged forest stands. PREBAS consists of 
a daily-time-step module (PRELES) to predict photosynthesis, soil moisture and 
evapotranspiration, and an annual-time-step module (CROBAS) to allocate the assimilated 
carbon to respiration and structural growth of biomass components. Intended for large-
scale applications in forestry, the model has modest input requirements and feasible 
runtimes. Parameterized with Bayesian calibration for three boreal species, the model has 
been demonstrated to perform adequately in country-wide applications (Minunno et al 
2019; Holmberg et al. 2019; Minunno et al 2016).  

PRELES (PREdict Light-use efficiency, Evapotranspiration and Soil water) predicts 
photosynthesis or gross primary production (GPP) and evapotranspiration using a light-
use-efficiency (LUE) approach linked to soil moisture. PRELES was developed so as to 
run with standard weather data (Peltoniemi et al. 2015). It calculates photosynthesis using 
potential LUE and multiplicative modifying factors that depend on the environmental 
drivers. One of these is soil moisture, which is predicted in PRELES using a simple bucket 
model that takes precipitation as input and is depleted by evapotranspiration. 
Evapotranspiration is divided into transpiration by the canopy and evaporation from 
surfaces and ground (including the ground layer). A similar modelling approach is used as 
in photosynthesis, where modifying factors reduce the potential evapotranspiration. 
Transpiration also strongly depends on photosynthesis due to their link through stomatal 
control. PRELES therefore shows strong interlinkages between photosynthesis, 
evapotranspiration and soil water (Tian et al. 2020). 

CROBAS is an individual tree growth model that can be applied for different stand 
configurations, climates and sites. Stand configurations are derived from the structural 
forest variables, and the weather effects are incorporated through impacts on 
photosynthesis, respiration and tissue longevity. In the FCM project, we use the climate-
dependent potential photosynthetic production of a stand, quantified by PRELES, to derive 
the geographic variation of the other relevant metabolic parameters, following the 
procedure proposed by Mäkelä et al. (2016). Edaphic site characteristics are described in 
terms of an aggregated soil fertility parameter that regulates below-ground allocation of 
carbon. 

Total tree growth in CROBAS equals annual net photosynthetic production. Respiration is 
divided into growth and maintenance components, where maintenance is assumed 
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proportional to live biomass and growth respiration is a proportion of growth. Total growth 
is allocated annually to the biomass components that comprise foliage, fine roots and three 
sapwood fractions, stems, branches and coarse roots. Carbon allocation between wood 
and foliage is based on the pipe model (Shinozaki et al. 1964) with dynamic crown rise, 
and allocation between fine roots and foliage assumes that fine-root to foliage ratio 
depends on nutrient availability, quantified in terms of site type (Valentine et al. 2013). 

The PREBAS model is integrated into the forest carbon monitoring platform in such a 
manner that the forest variable inputs are derived from the forest variable maps produced 
by the methods described above and the PREBAS model is used to output above ground 
and below ground biomass. It can also be used to provide a wide range of carbon flux 
products and forecasts as well. 

5.7.2 Performance  

As an example of typical level of performance of the PREBAS, we here present calibration 
results of the model in the Norwegian use case demonstration area. PREBAS model 
requires daily meteorological inputs for photosynthetically active radiation (PAR), air 
temperature (TAir), precipitation (P), vapor pressure deficit (VPD), and ambient CO2 
concentration. This input was prepared from E-OBS data, an ensemble dataset available 
at a 0.1-degree grid. The data on global radiation, daily mean temperature, daily 
precipitation sum, and daily mean relative humidity from E-OBS were used. The PAR was 
calculated from global radiation, and VPD was calculated using relative humidity and 
temperature (Allen et al., 1998).  

The model was calibrated using Norwegian National Forest Inventory (NFI) data. The 
dataset consisted of multi-temporal forest stand structure data from 1913 stands. These 
stands consisted of pine, spruce, and broadleaved trees, with 36% of the stands being 
mono-specific, 44% with two of the three species, and the remaining 20% being the mixed 
stands of pine, spruce, and broadleaved trees. The NFI data included repeated 
measurements of height, diameter at breast height, basal area, height of crown base, 
volume, and biomass. The NFI data was divided into calibration and validation sets (20% 
of the stands). 

The model was initialized using the first available NFI measurements from 2001. The 
repeated measurements were assimilated into the model to calibrate the model 
parameters. Bayesian calibration is a statistical approach used to refine model parameters 
by integrating prior knowledge with observational data. The prior parameter values were 
defined from previous calibrations of PREBAS model components (PRELES - Minunno et 
al., 2016 and CROBAS - Minunno et al., 2019). The parameter ranges were defined based 
on expert knowledge. The likelihood functions (Sivia et al., 2006) for outputs were defined 
which were used to update the prior parameters. The posterior distribution was numerically 
sampled using the Differential Evolution Markov Chain Monte-Carlo algorithm (ter Braak & 
Vrugt, 2008). The Gelman-Rubin diagnostic (Gelman & Rubin, 1992) was used to test the 
parameter convergence. When the parameter convergence was achieved, the calibrated 
set of parameters were used for model simulations for calibration and validation stands. 
The model performance was evaluated using R2 and RMSE values, then the mean square 
errors were compared.  

The observed vs. simulated values of forest structural variables (Figure 35) showed 
improvements in the R2 and RMSE values when using the calibrated parameters in both 
the calibration and validation stands.
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Figure 35. Observed vs. simulated values using the default and the calibrated parameter sets in PREBAS model. 
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Figure 36. Mean square error and its components calculated from PREBAS simulations using default and calibrated parameters. 
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The mean square errors were decomposed into three components, representing the 

average deviation of the simulations from the data (i.e., bias error, sb), if the variability 

in the data was well-captured by the simulations (i.e., variance error, calculated as the 

square difference between standard deviations (sdsd)) and the ability of the model to 

reproduce the pattern of the fluctuations among the data (i.e., phase shift error 

representing the lack of correlation (lc)) (Kobayashi & Salam, 2000). The simulations 

using the calibrated model parameters showed overall reductions in MSE (Figure 36). 

The reduction varied between 50% and 80% of the MSE measured prior to calibration. 

5.8 Data assimilation 

 
One of the problematic issues of EO based forest monitoring is the potential inconsistency 
of the time series of output products on pixel and stand level. For any certification purpose 
or regulatory monitoring, it is essential that the time series of the results will provide logical 
and consistent trends corresponding to the actual changes in the target area. To improve 
the temporal consistency of the predictions, the FCM concept provides the data 
assimilation (DA) approach. The DA is based on an ensemble Kalman filter that allows to 
integrate all the available information in the DA framework. By combining the PREBAS 
process-based ecosystem model predictions and the EO-based predictions with the DA, 
the time series of output maps provide a more consistent time-series for the users. 
 

The high-level flowchart of the implementation of the DA as demonstrated in the Norway 

use case is provided in Figure 37. The forest model PREBAS is initialized with the forest 

structural variables estimated with EO data of the first year (2017). PREBAS is run until the 

next available EO dataset (2019), at which point the PREBAS and EO-based predictions 

of the forest structural variables are combined by means of the DA framework to derive a 

new prediction. The new prediction is used to initialise PREBAS and this cycle is repeated 

for 2021 and 2023. 

 

 
 

Figure 37. High level illustration of the data assimilation flow chart. 

Earth observation predictions of forest structural variables (EO) are used to initialize the forest model 
PREBAS in case of the first measurements or when changes of forest cover are detected (AC). Otherwise 
EO are combined with forest model predictions (mod sim) to update the status of forest structural variables 

(DA). 
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In DA the different sources of information, in this case forest model predictions and satellite-

based predictions, are integrated accounting for their relative uncertainty. Model predictive 

uncertainty is quantified using Montecarlo simulations, whereas for EO based predictions 

the pixel based uncertainty estimates are used. Autochange detections are integrated in 

the analyses. For pixels where a change in forest structure is detected, the DA step is 

skipped and PREBAS is initialized directly with the most recent EO-based predictions. For 

the pixels covered by clouds, data assimilation is bypassed, and model predictions are 

utilized to forecast forest growth until the next available S2 data.  

 

The data assimilation framework consists of five steps (Figure 38). The description here is 
derived mainly from Minunno et al. (2025). Steps 2 to 5 are implemented at pixel level: 
 

1. Emulator calibration 
2. Monte Carlo simulations for the uncertainty quantification of initial state 
3. Forecast step 
4. Data assimilation 
5. Map production 

 

 

 
 

Figure 38. Flowchart for the data assimilation framework of forest structural variables. 
P(θ|D): posterior probability distribution of forest structural variables integrating data between EO-based 

and modelled predictions; P(θ): prior distribution,  given by the initial state uncertainty of Sentinel-2 
predictions for the first year propagated to t2 by means of model predictions; P(D|θ): likelihood function 

calculated using forest structural variables calculated by model predictions and Sentinel-2 predictions for t2. 

 

1. In step 1, the emulators are fitted using PREBAS outputs. A large number of pixels 

(e.g. around 20 000 for one Sentinel-2 image) are randomly extracted. PREBAS is 

initialized with EO-based predictions and the outputs (e.g. B, D, H, species coverage) 

are modelled for t2 to fit the emulators. 

2. In step 2, for each pixel, 1000 samples of interest variables (e.g. B, D, H and species 

coverage) are drawn, using a multivariate normal distribution fitted on the basis of 

EO-based predictions and field measurements. 

3. In step 3, the emulator is run 1000 times for each pixel using the inputs generated in 

step 2. By means of the emulator runs the forest structural variables are computed at 

t2 with the associated uncertainty. 



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document  
(ATBD), Update 

 

71 
 

4. In step 4, the emulator forecasts are combined with satellite-based predictions at t2 

using the Bayesian approach. The forecasts are used to construct the prior 

distribution for the forest structural variables and the new predictions at t2 are 

encoded in the likelihood defined in the accuracy assessment analysis. The posterior 

is calculated using the Kalman filter as an analytical solution to compute the moments 

of forest structural variables.  

5. In step 5, maps of carbon balance and forest growth and their relative uncertainties 

are generated using the maximum a posteriori (MAP) predictions and their relative 

uncertainty expressed by standard deviation. 

The idea is that the data assimilation approach allows creation and updating of consistent 

time series of forest variable and carbon flux predictions. The monitoring system could be 

be continuously updating with increasing accuracy, as new observations (either EO-based 

on from other sources) are obtained. 
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6. Conclusion 

The extensive testing and use case demonstrations conducted during the project 
emphasize the effects of the conditions and goals of the use case on the selection of the 
most suitable tool. None of the tools can be said to be the best option overall, but the most 
optimal tool (or a combination of tools) need to be chosen case-by-case taking into account 
the available datasets, the characteristics of the area of interest and the objectives of the 
use case. 

Empirical methods with field data measurements from the area of interest provide more 
flexibility to meet varying user needs (e.g., related to the required forest variables) and 
maximizing the potential of available datasets. Typically, highest accuracies could be 
reached in the test areas with approaches combining local field reference data with a fusion 
of optical and radar satellite data. 

On the other hand, a method like BIOMASAR enables production of large area forest 
volume and biomass maps with consistent methodology and without field data from the 
area of interest. The reliance on radar data time series also decreases impact of weather 
variations in the results. With a range of methods from semi-automated empirical to fully 
automated physical methods, the FCM toolbox can respond to different user requests with 
varying interest variables, data availability and the size of geographic interest area. 

The availability of the EO and reference datasets for the interest area is the most important 
factor effecting the level of accuracy that can be reached in the mapping. The selection of 
EO datasets used in a particular use case depends both on the physical availability of 
datasets as well as the willingness of the user to purchase EO data in addition to freely 
available datasets. The algorithm to be used in the mapping should be selected based on 
the available EO and reference data, as well as the objectives of the use case. 

Although the selection of optimal algorithm to be used depends on several practical and 
scientific aspects and has to be evaluated case-by-case, some general guidance can be 
given to users: 

1. Availability of field reference data: The type and availability of field reference data is 
one of the most important deciding factors when choosing the most suitable 
algorithm. If there is no field data available from the user or other sources to train 
the model for the area of interest, there are two options: to apply blindly a model 
trained in another area or to use the BIOMASAR approach. The choice depends 
largely on the variables of interest and the required spatial and temporal detail, as 
well as the size of the interest area. The former choice is feasible if reference data 
or models from similar ecological conditions are available, and particularly if a small 
number of field plots can be measured for model finetuning purposes. The latter 
approach is particularly suitable for large area mapping up to continental and global 
levels. Four years of growing stock volume and biomass maps (2017, 2020, 2021 
and 2023) of European wide biomass maps are available on the FCM product portal. 

2. Amount of available reference data: A second important aspect is the amount of 
available reference data. In the case of extensive wall-to-wall reference data layers 
or high number of field plots, the choice of algorithm can be based on practical 
preferences or comparative tests. If the number of plots is limited (<100), and/or its 
representativeness cannot be guaranteed, the Probability method or UNet model 
transfers are the most recommended options. The benefit of the semi-automated 
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Probability approach is that it allows visual evaluation and manual fine-tuning of the 
model. This becomes a vital asset in situations where the field is not representative 
and needs to be supplemented by visual evaluation of the interest area in 
combination with the unsupervised clustering (the first step of the Probability 
process). Another option is the transfer of UNet model into the target area by 
finetuning the model with the limited number of reference data. 

3. Number of interest variables: The benefit of the k-NN and Probability algorithms is 
that they can produce multivariate predictions, meaning that multiple variables are 
predicted in one process using the same reference data, thereby retaining the 
relationships between the variables (such as diameter, basal area, height and 
biomass). Other algorithms, such as the UNet, produce predictions for single 
variables. This may in some cases result in unrealistic combinations of forest 
variable predictions, which in turn affects the process-based ecosystem modelling. 
The user needs to consider the main goals use case and the trade-offs between the 
single and multivariate algorithms. 

It is also important to note that no specific number of plots can be used as the threshold for 
“sufficient” number of plots. It strongly depends on the variability of the forest area and the 
range of different characteristics of the area included in the plots. Typically, at least 100 
plots are required for reliable k-NN implementation and preferably at least 50 for UNet 
model finetuning. But the characteristics and representability of the field dataset needs to 
be evaluated case-by-case. 

Overall, the selection of the optimal algorithm (or an existing product) is often based mainly 
on practical aspects on reference data and EO data availability. The FCM tools offer a 
range of options to choose from. This document has provided the scientific basis for the 
tools with examples of the typical levels of uncertainty that can be reached. In addition, key 
issues to be considered in the selection of the algorithm have been discussed. Further 
information and examples of use cases can also be found in the Forest Carbon Monitoring 
website. We recommend anyone interested in using the FCM tools to contact the FCM 
team with very low threshold through the website (https://www.forestcarbonplatform.org/) 
or through the Forestry TEP platform (https://f-tep.com/). We will be happy to advice on the 
options bilaterally considering the details of each individual use case. 
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