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1. Introduction

The Forest Carbon Monitoring (FCM) project developed remote sensing-based, user-
centric approaches for forest carbon monitoring. The project implemented a set of tools for
monitoring of forest structural variables, biomass and carbon stock. In the main project
(July 2021 - June 2023), a prototype platform was successfully implemented and its
functionalities demonstrated on nine use cases. In the continuation project (FCM CCNZ2;
May 2024 — November 2025) the selection of available tools was widened, and two
additional use case demonstration areas were added. The continuation of the project
addressed shortcomings identified by the users during the main project, to close gaps
between user expectations and the available tools.

The document at hand, ‘CCN2-D07 Algorithm Theoretical Basis Document (ATBD),
Update’, provides scientific basis for the tools offered in the FCM toolbox. In addition to the
description of the algorithms, also the uncertainty estimation methods and main datasets
used during the project are described. For each tool, examples of the performance in the
FCM use case demonstrations have been reported to provide an indication of the level of
expected uncertainty of the output products.

In addition to this introduction, the ‘CCN2-D07 Algorithm Theoretical Basis Document
(ATBD)’ contains five main sections:

e [FCM concept and tools, which provides an overview of the Forest Carbon Monitoring
concept and available tools.

e Primary datasets, which describes the primary datasets that were used in the
development and demonstration of the tools.

e Statistical approaches, which describes the statistical approaches used in the
evaluation of the uncertainty and utilisation of the of the output products.

e Algorithm descriptions, which provides descriptions of the algorithms and
approaches underlying the FCM tools, including the levels of uncertainty reached in
the use case demonstrations.

e Conclusion, which wraps up the main message of the ATBD document and provides
users with advice on how to select algorithm for their use case.
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2. Forest Carbon Monitoring concept and tools

2.1 Forest Carbon Monitoring concept

The Forest Carbon Monitoring concept (Figure 1) aims to provide a toolset to support
monitoring of forest structural variables, biomass and carbon stock. The underlying idea of
the concept is that a set of tools is needed to meet the highly varying requirements by
different types of stakeholders. The goal of the toolset is to be able to provide optimal tools
for satellite-based forest monitoring tasks depending on the available datasets and specific
user requirements. Key aspects of the FCM approach include:

e Maximising the integration of in-situ data whenever available
¢ Integration of process-based forest ecosystem carbon modelling into the system

e Flexibility to user needs ranging from private company area monitoring to
continental analyses

User Raquest Service delivery

Optical & Radar

satellite data Analysis and
= visualization

Field
measuremeants

@ Execution of optimal
processing chain

DATASETS —— PROCESSING —— OUTPUT

Figure 1. High-level illustration of the Forest Carbon Monitoring concept.

The algorithms and tools were developed together with the use partners and each tool was
implemented and evaluated in one of the 11 use cases described in the next section. The
findings from the use case demonstrations provided valuable information on the
performance of the algorithms in varying ecosystems and with varying availability of Earth
Observation (EO) and reference datasets.
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2.2 Available tools

While the FCM project mainly concentrated on prediction of forest biomass and carbon
variables, other forest variables were also needed in the prediction. Traditional forest
inventory variables were used as inputs for biomass modelling, or growing stock volume
was converted to biomass estimates using conversion factors. Furthermore, many users
required information on traditional forest inventory variables as well (such as basal area,
diameter, height). These basic forest variables are needed to support forest management
decisions but also allow biomass or carbon flux prediction when required.

Figure 2 provides an overview of the algorithms used in the Forest Carbon Monitoring tools.
The tools can be divided into four main groups: 1) Pre-processing, 2) Forest structure
mapping, 3) Ecosystem modelling and 4) Change detection. Although most of the tools
developed in the FCM project are flexible regarding the input data, the integrated pre-
processing tools make the implementation of processing workflows more fluent. All the
forest structure mapping tools can take single date EO imagery or analysis ready products
as inputs, but the Sentinel-1 and Sentinel-2 compositing tools enable creation of feasible
input data in cases where suitable single date imagery or analysis ready products are not
readily available.

52 compositing 51 compositing 51 pre-processing
Pre-processed datasets : Pre- and post change images
Forest structure mapping tools BIOMASAR tool Change detection tool
Probability k-NN UNet BIOMASAR AutoChange
\
Forest structure varioble products Change detection products
Example products; height, diameter, basal area, volume, biomass, etc., Outputs: volume, above Outputs: change magnitude,
depending on the available reference data. ground blomass, below change type and blomass
ground biomass, decrease mask.
Ecosystem
modelling PREBAS

Biomass, growth and carbon flux products

Example products: above ground blomass, below ground blomass, stem
volume increment, net ecosystem exchange, etc.

Figure 2. Overall workflow of algorithms (orange ovals) used in the Forest Carbon Monitoring.

The Forest structure mapping tools form the core of the FCM toolbox. Three of the tools
(namely Probability, k-NN and UNet) are highly versatile tools that can work with multi-
sensor datasets and produce predictions of a wide range of variables, depending on the
availability of datasets and user requirements. Naturally, correlation of the EO data features
with the target variable features is a pre-requisite for any meaningful forest variable
prediction. The BIOMASAR tool is a more specialised tool designed for growing stock
volume and biomass prediction using radar datasets (typically a combination of C and L-
band data).

10
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The ecosystem modelling tool PREBAS enables modelling of biomass and carbon stocks
and fluxes for current situation as well as future forecasting. As a process-based ecosystem
model, variations of climatic and other environmental or anthropogenic factors can be taken
into account while producing forecasts with varying future scenarios.

In addition to the forest structure mapping and ecosystem modelling tools, also a change
detection tool called Autochange is provided in the FCM toolbox. This is a versatile generic
image-to-image change detection algorithm that accepts a wide range of input data types
and is resistant to general level differences in the pre- and post-change imagery. The tool
provides change magnitude as its main output.

The tools described above have been extensively tested in 11 use case demonstration
sites during the FCM project (Figure 3 and Table 1). Each of these sites had a dedicated
user partner with specific requirements. The availability of EO and reference datasets
varied drastically between the use cases. These variations gave an excellent opportunity
to evaluate the usability of tools in a wide range of situations.

Demonstration
areas

O

2 Colombia

Finland
3

Norway | q:%
Tropica L
Ire!avw@
Peru

Europe

Austria

Galicia U @
Cl Styria
Romania

O

Extremadura Catalonia

Figure 3. Geographic distribution of FCM use case demonstrations.
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Table 1. Characteristics of FCM use case demonstrations.

Size Primary Primary

H 2
(S2 tiles) datasets' algorithms LA UL Years
5 p .82,; Sfi] Id Probability D, G, H, GSV, AGB, 2019 + 2020
rivate e PREBAS BGB, SVI +2021
plots
S2, S1 - N, D, G, H, GSV,
Ireland 8 Private field PF:;?; L‘Igy Species% (4), AGB, 2O1+928221020
plots BGB, SVI
S2, S1 D, G, H, GSV,
Romania 3 Private field PI:E'\IIBI\,]AS Species% (2), Site, 201+928221020
plots AGB, BGB, SVI
S2 -
) i Probability D, G, H, AGB, BGB,
Extremadura 1 Private field PREBAS svi 2017 + 2022
plots
S2, S1 . D, G, H, GSV,
Styria 3 Private field IT;;?; 'L‘h;y Species% (2), AGB, 201 52-621? 18+
plots BGB, SVI
S2, S13
Catalonia (+ T kNN 2020 + 2021 +
Andorra) g = prvziis UNet N.D, G, H, GSV, AGB | "5053 + 2024
field plots
S2, S1, P2 kNN D, G’.H’OGSV’ 2017 + 2019 +
Norway 35 NF! field plot Unet Species% (3), 2021 + 2023
ield plots PREBAS AGB, BGB, SV
Finland 63 N mr#:;ss°“r°e PREBAS AGB, BGB, SV 2017 + 2019
S1, P2, IceSat-2 2017 + 2020 +
746 .NFI field plots BIOMASAR GSV, AGB, BGB 2021 + 2023
LiDAR reference
Colombia 16 52, P2, NICFI S AGB 2023/2024
Field campaign sampling
Peru 16 S22y (R Probabilit D, G, H, GSV, AGB 2020 + 2021
NF field plots y b S
1) 82 = Sentinel-2, S1 = Sentinel-1, P2 = PALSAR 2, NICFI = NICFI Planet mosaic, NFI = National Forest

Inventory

2N = stem density, D = diameter, G = basal area, H = height, Species% (x) = species proportions (of basal
area) for x species or species groups, Site = site type, GSV = growing stock volume, AGB = above ground
biomass, BGB = below ground biomass, SVI = stem volume increment

3) S1 not used in project continuation phase

The lessons learned in these use case demonstrations regarding the uncertainty of the
output products are reported in this document under the ‘Performance’-subsections within
each algorithm description. Further information regarding output product uncertainties in
specific conditions or general applicability of the tools can be obtained by contacting the
FCM team through the website (https://www.forestcarbonplatform.org/) or through the
Forestry TEP platform (https://f-tep.com/).

12
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3. Primary data sources

3.1 General note regarding input data

It is important to note that most of the algorithms utilised in the FCM tools are capable of
using multiple data sources. The primary data sources presented in this chapter are the
ones that were used in the testing phase or in the use case demonstrations during the
Forest Carbon Monitoring project. Three FCM tools have also been created for
preprocessing of Sentinel-1 and Sentinel-2 data. These are also the primary data sources
for the FCM tools. As most of the tools are flexible regarding input data, the best set of
input data sources can be decided case-by-case depending on the availability of datasets
and the objectives of the mapping.

The primary data sources presented in this chapter include:
1. Sentinel-2 satellite imagery, with a compositing algorithm

2. Sentinel-1 satellite data, with description of pre-processing steps and compositing
algorithm

3. ALOS-2 PALSAR-2 data, with description of the pre-processing steps
4. TanDEM-X data
5. Spaceborne LiDAR data

3.2 Sentinel-2
3.2.1 Sentinel-2 imagery

The Sentinel-2 mission is designed to provide global acquisitions of fine high-resolution,
multispectral optical imagery in fine temporal resolution. It has three satellites in orbit: S2A
launched on 23 Jun 2015, S2B on 7 Mar 2017 and S2C on 5 Sep 2024. The satellites have
a wide (290 km) imaging swath width and 10 days revisit time at the equator. With two
satellites in orbit (the target number to be maintained), this enables five days imaging
frequency at the equator and 2-3 days imaging frequency at mid-latitudes. With coverage
limits between 56° south and 84° north latitudes, the data cover all forested areas of the
world. The Multi-Spectral Instrument (MSI) on board Sentinel-2 satellites has 13 spectral
bands, four of which have 10 m and six of which have 20 m spatial resolution. The
remaining three bands with 60 m spatial resolution are mainly used for atmospheric
correction.

Sentinel-2 is the main optical satellite data source for the FCM tools. Due to its open and
free data policy and global coverage, it is an optimal choice for operational forest
monitoring. Furthermore, it provides sufficient spatial resolution to meet most user
requirements and a suitable selection of wavelengths for forest variable prediction. Its high
imaging frequency improves the probability of obtaining cloud free observations.

The Level 2A surface reflectance product is systematically generated by ESA and
distributed in tiles of 110 x 110 km2. This has been the main Sentinel-2 data product used
in the FCM project. Seven spectral bands have been typically used (Table 2), based on
earlier findings on the importance of bands for forest monitoring (Astola et al. 2019,
Miettinen et al. 2021).

13
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Table 2. Sentinel-2 spectral bands typically used in FCM tool demonstrations.

Sentinel-2 band  B02 B03 'B04 'BO5 'BO8 B11

Blue Green Red Red Edge 1 NIR SWIR SWIR
0.49 um | 0.56 ym | 0.67 uym 0.71um | 0.84pum | 1.61 uym | 2.19 ym

Wavelength

Original spatial
resolution

10 m 10 m 10m 20m 10 m 20m 20m

3.2.2 Sentinel-2 multi-temporal compositing

In case where suitable single date imagery is not available, the Sentinel-2 compositing can
be conducted with a tool developed by Terramonitor. The objective of the compositing
process is to create a cloud-free image from many observations. To this end, each pixel is
evaluated according to four criteria: cloudiness, resemblance to usual pixels observed in
the location (based on a reference mosaic), haze and shadows. A weight is then given for
each pixel according to the four criteria. These weights are used to average the
observations given as input and produce the final image. The weighted average merging
algorithm is defined mathematically as follows. Let X=(xs, x2,...,xt) denote a time series of
observations for a given geographical point, where each element x; denotes an observation
from the Sentinel-2 satellite. Each observation x=(x(0), x(1),...,x(12)) consists of the band
values x(0), x(1),...,x(12), where x(0) is the value of the scene classification band provided
with the Sentinel-2 Level 2A product and x(7),...,x(12) correspond to the values of the
Sentinel-2 bands 2, 3, 4, 5, 8, 11 and 12, respectively.

The weight for an observation x is given by the formula w(x)=mc (x) ma (x) mn (x) ms (x),
where mc (x),maq (x),mn (x) and ms (x) represent multiplier functions that are based on scene
classification, spectral distance, haze and shadows, respectively. Each multiplier function
produces a value between 0 and 1 that describes the validity of the observation with respect
to one of the criteria. For example, if the multiplier function mn gives the value 1, it means
that the observation is assumed to be totally valid with respect to haze, i.e., haze-free. If
the weight of an observation is close to one, it means that the validity of the observation is
large with respect to all of the criteria.

The scene classification multiplier is defined by the formula:

lifxog €V
0 otherwise’

me(x) = { (3.2.2.1)

where V ={2,4,5,6,7} denotes the set of valid classes for the scene classification band (2:
dark area pixels, 4: vegetation, 5: not vegetated, 6: water, 7: unclassified).

The spectral distance multiplier is used to evaluate the resemblance of the pixel to cloud-
free pixels observed in the location, and is defined using the formula:

mq(x) = (min (max (1 — (Z(;Ci) , 0) , 1))pd, (3.2.2.2)
where L={l4,...,In} is a collection of n cloud-free reference observations and d(x,L) denotes
the minimum spectral distance between observation x and the observations in L, that is,
d(x,L)=min{de (x,1) | | €L}, where de represents the Euclidean distance function. dmax and pd
are constants whose values are set to 3000 and 6, respectively. The values were set
through visual evaluation of preliminary test results for one tile in Finland (35VLJ) and
earlier experiences with the aim of maximizing the number of observations without including
any noticeable haze in the final product.

14
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The haze multiplier is defined using the formula:

my(x) = (min (max (1 _ 4 ,0),1>>ph, (3.2.2.3)

hmax

where x1 represents the value of the Sentinel-2 band 1, hmax = 3000 and pn = 6.
The shadow multiplier is defined by the formula:
)::EZ,O),l) if xs <cq,

min (max (1 — xs—_ci, 0) , 1) otherwise,

Cy—C

min (max (1 -

ms(x) = (3.2.2.4)

where xs is the value of the Sentinel-2 band 8 (near infrared), co= 100, ¢s =250 and c2=
2000.

Finally, given the time series of observations X=(x1,x2, ...,xt) and the corresponding weights
w(x1),w(x2),...,w(xt), the weighted average ax of the observations is given by the formula:

S
=

Seven spectral bands are output into the resulting composite images (Table 1). In addition
to the seven spectral bands, a quality parameter is calculated. The quality band value
described the probability of at least one good observation, which is calculated per pixel
using the formula P = 1 - [|(1-pi), where p; denotes the probability that observation i/ was
good for i{1,...,n}, where n denotes the number of observations for the pixel. For the final
composite images, all bands are resampled to match the 10 m resolution bands using
nearest neighbour resampling.

(3.2.2.5)

3.3 Sentinel-1

3.3.1 Sentinel-1 data

Sentinel-1 (S1) is a spaceborne mission operated by the European Commission in the
Copernicus framework and consists, as of year 2025, of three identical satellites (1A, 1B,
and 1C), each operating a C-band SAR. Sentinel-1A was launched in 2014 and began
routine observations in 2015. Sentinel-1B was launched in 2016 and became operational
at the beginning of 2017. Operation of Sentinel-1B ended in 2021 because of a hardware
failure. Sentinel-1C was launched in 2025. Each satellite has a 12-day repeat-pass
interval. When combined, two satellites provide for a six-day repeat coverage and even
more frequent observations when considering the overlap between adjacent orbits, in
particular at high latitudes. Over land, the Interferometric Wide Swath (IWS) mode is the
primary acquisition mode, which allows for single- or dual-polarization acquisitions (VV or
VV/VH over most of the Earths’ land area, HH or HH/HV over the Arctic and Antarctic) with
a spatial resolution of approximately 20 m in range and 5 m in azimuth. Being a Copernicus
mission, the greatest priority is given to acquisitions over Europe, where each satellite
acquires continuously along both ascending and descending orbital tracks (Figure 4).
Combined, Sentinel-1A and 1B acquired a total of about 60 000 scenes per year with 60
observations from ascending and descending orbital tracks each (relative orbit in ESA
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terminology) over the European demonstration area. Sentinel-1A and 1C will provide for a
similar data amount in the coming years.
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Figure 4. Observation geometry of the Sentinel-1 mission’.

3.3.2 Sentinel-1 pre-processing

The Sentinel-1 C-band backscatter intensity was identified as a core observable to support
the prediction of forest growing stock volume and above-ground biomass variables
following the approaches developed in the frame of CCl Biomass. The pre-processing is
applied to Sentinel-1 images provided in Ground Range Detected (GRD) format. GRD
images consist of ground-range projected images of the SAR backscatter intensity. Scope
of pre-processing that is carried out in the FCM project is to generate a stack of terrain
geocoded, radiometrically calibrated, speckle-filtered and co-registered Sentinel-1
observations. Pre-processing with the commercial software package by GAMMA Remote
Sensing comprises:

1) 2 x 2 multi-looking in range and azimuth to obtain pixels with 20 x 20 m? ground pixel
posting,

2) compensation for the noise equivalent sigma nought (NESZ),

3) updating of orbit state vectors with precision orbit vectors provided by ESA within 20
days past the image acquisition?

4) topographic correction accounting for varying pixel scattering areas dependent on
topography as with Frey et al. (2013) to produce “terrain-flattened” g° backscatter
intensity images,

5) geocoding and orthorectification based on the Copernicus 1-arcsecond Digital
Elevation Model (DEM) to the target UTM map grid with 20 x 20 m? pixel size.

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
2 https://gc.sentinel1.eo.esa.int/aux_poeorb/
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All geocoded images are resampled to the same MGRS/UTM tiling grid to which ESA
processes Sentinel-2 data to allow for a joint use/inter-comparison of Sentinel-1 and
Sentinel-2 imagery.

Given the large level of correlation among biomass maps generated from Sentinel-1
observations acquired with 6-day repeat intervals and, hence, the limited benefit of
considering all available observations, only images acquired in dual-polarization (VV/VH)
IWS mode by one of the two satellites, i.e., S1A, were considered in the FCM project. This
reduced the amount of data to be processed to 25 to 30 000 GRDs for each of the four
years for which forest GSV and AGB maps were produced. Only in a few areas with
reduced data availability, e.g., Southern Finland, data from both satellites had to be
considered.

For the development and validation of the algorithm to be applied for the pan-European
mapping, data from testing sites in Finland Romania, and Catalonia were used. Sentinel-1
GRD images were selected and pre-processed in accordance with the processing workflow
discussed above. For each testing site, all images acquired by S1A from one descending
and one ascending relative orbit in two years have been considered (Table 3). Only in the
case of the testing area in Southern Finland (Finland S) was data from S1B added to the
stack to obtain a consistent time series of observations from both, ascending and
descending, orbits (Figure 5). For each testing site the time frame covered by the selected
Sentinel-1 data was chosen in accordance with the collection of the in situ information
available for each site.

Table 3. Sentinel GRD imagery processed for the six test areas in Europe.

Satellite Relative orbit Years Number of images
Finland N 80/116 2018/2019 118
Finland S S1A/S1B 87/153 2018/2019 89
Romania S1A 109/131 2019/2020 240

Catalonia S1A 37/132 2015/2016 143

3.3.3 Sentinel-1 compositing

The forest structural variable retrieval approaches described in Sections 5.2-5.4 benefit
from using multi-temporal composites of the Sentinel-1 backscatter images. A Forestry
TEP tool was therefore created, which calculates the average backscatter at VV or VH
polarization for each Sentinel-1 orbital track. For an annual composite, for example, given
the 12-day repeat cycle of Sentinel-1A, the Forestry TEP tool computes the average
backscatter across 30 to 31 images acquired in a given year. Each multitemporal composite
is accompanied by a single map of the local incidence angle and layover/shadow mask.
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Romania

Figure 5. Location of the study sites. Each site is illustrated with a colour composite of Sentinel-1
imagery (Red: VV-polarized backscatter; Green: VH-polarized backscatter; Blue: difference in the
VV- and VH-polarized backscatter) (Santoro et al., 2024b).

3.4 ALOS-2 PALSAR-2 mosaics

The ALOS-2 mission started on May 24, 2014, and carries an L-band SAR (PALSAR-2
instrument) with slightly improved performance than its predecessor, ALOS-1 PALSAR-1.
ALOS-2 PALSAR-2 operates in several high-resolution (e.g., Fine Beam, FB) and a
moderate resolution ScanSAR mode (WB) with resolutions of the order of 25 and 50 m,
respectively. Each year global and repeated acquisitions are scheduled during seasons
that are known to maximize the information content of the backscattered signal with respect
to land surface properties. In both FB and WB mode, PALSAR-2 acquires data in single

polarization (HH) and dual polarization

(HH and HV, VV and VH over Japan), covering

swaths of approximately 70 km and 250 km, respectively. While the acquisition plan
foresees at least one global coverage per year at fine, i.e., 25 m, resolution in FB dual-
polarization mode, multiple acquisitions may be available per year from WB mode, albeit

only in the tropics.
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L-band backscatter was identified as a crucial observable to complement Sentinel-1
backscatter time series for improving the retrieval of GSV and AGB particularly in high
biomass forests. Because of the data policy applied by JAXA to ALOS-1 and ALOS-2 data,
only a limited number of images can generally be obtained free of charge, which hinders
large scale application. Large scale coverages of ALOS-2 PALSAR-2 data could only be
obtained so far in the form of yearly backscatter mosaics (2015-2021) for the FB mode
(Shimada and Ohtaki, 2010; Shimada et al., 2014) and per-cycle mosaics (46 days) for the
WB mode. While the FB mosaics are publicly available, the ScanSAR mosaics are
available only to a restricted research community (i.e., the Kyoto and Carbon (K&C)
Initiative). The FB mode mosaics generally present almost complete global coverage
(subset of the year 2020 mosaic for Europe is shown in Figure 6). The number of available
observations from the mosaics is one at each location, therefore limiting the performance
of the GSV and AGB retrieval.

Figure 6. ALOS-2 PALSAR-2 HV-pol mosaic produced by JAXA from FB data acquired in 2020.

For the second phase of the FCM project, JAXA granted exclusive access to all ALOS-2
FBD images acquired over Europe in 2017, 2020, 2021, and 2023. The ALOS-2 data were
provided in the form of ca. 300 km long strips in range-doppler geometry and processed to
radiometric terrain-corrected level by the FCM project team. Pre-processing was done with
the commercial software package by GAMMA Remote Sensing and comprised:

1. multi-looking to obtain pixels with ca. 20 x 20 m? ground pixel posting,

2. topographic correction accounting for varying pixel scattering areas dependent on
topography as with Frey et al. (2013) to produce “terrain-flattened” »? backscatter
intensity images,

3. geocoding and orthorectification based on the Copernicus 1-arcsecond Digital
Elevation Model (DEM) to the target UTM map grid with 20 x 20 m? pixel size.

Figure 7 illustrates the number of images available for Europe for the four selected years.
The best coverage was generally available for Northern Europe. In Southern and Central
Europe, the number of available observations varied between two and four per year.
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Figure 7. Coverage of ALOS-2 PALSAR-2 Fine-Beam data provided by JAXA for the year 2017, 2020,
2021, 2023.

3.5 TanDEM-X images

The German TanDEM-X mission flies the two satellites TerraSAR-X and TanDEM-X in a
close orbit formation establishing a bistatic interferometer in space. The primary mission
goal was generation of a global DEM (Krieger et al., 2007). The SAR data, jointly acquired
by both satellites, are operationally processed by the Integrated TanDEM-X Processor.
Processing comprises bistatic synchronization and focusing, filtering, co-registration,
phase unwrapping and geocoding (Breit et al., 2012). Outputs are an individual scene-
based (50 km x 30 km) DEM and a co-registered phase preserving single look slant range
complex SAR images (CoSSC).

TanDEM-X data were previously demonstrated as a useful source of information for
predicting the vertical structure of forests. While normally multi-polarizations
measurements — polarimetric interferometric SAR (Pol-InSAR) signatures are most useful
for forest structure assessment, also single-pol INSAR measurements in presence of
external ground DEM (Praks et al., 2012, Krieger et al., 2014), and to considerable extent
the magnitude of INSAR coherence (Olesk et al.,, 2016) can be used to estimate
relationships between TanDEM-X observables and forest variables.

In FCM, primarily single-pol (HH) CoSSC images acquired during one close to baseline
year were used in forest variable prediction and producing forest attribute maps. Tentative
coverage over the Catalonia test site is shown in Figure 8.
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Figure 8. TanDEM-X data coverage over Catalonia.

3.6 Spaceborne LiDAR data

LiDAR observations are closely related to vegetation structural features, thus being well-
suited for direct prediction of forest variables related to the biomass. The density of global
spaceborne LiDAR observations from the ICESat (2003-2009), ICESat-2 (2018-ongoing)
and GEDI (2019-ongoing) missions is, however, still too coarse to allow for wall-to-wall
prediction of forest variables. Spaceborne LIDAR observations are, therefore, considered
here in the process of calibrating SAR models rather than used as predictors of biomass.

Between 2003 and 2009 the Ice Cloud and Elevation Satellite (ICESat) Geoscience Laser
Altimeter System (GLAS) instrument collected information related to the vertical structure
of forests in ca. 65 m large footprints collected every 170 m along track. The distance
between tracks was of the order of 10s of km and increased towards the equator. The
GLA14 product (version 34), which provides altimetry data for land surfaces only to which
geodetic, was used to estimate canopy density (CD) calculated as the ratio of energy
received from the canopy (returns above the ground peak) to the total energy received and
the height (h) as the distance between the ground peak and signal beginning (RH100).
Forest height was computed following the approaches in Simard et al. (2011) and Los et
al. (2012), which calculated RH100 globally and defined a set of filters to discard footprints
affected by topography and various noise sources in the waveforms (Santoro et al., 2021a).

Unlike the GLAS sensor, the Advanced Topographic Laser Altimeter System (ATLAS)
onboard the ICESat-2 satellite, uses photon counting to retrieve elevation. With a frequency
of 10,000 pulses per second, ATLAS achieves a much denser portrait of the surface
compared to the 40 pulses used by GLAS. The measurement technique is, however,
strongly affected by the power recorded by the instrument. ATLAS splits the laser into three
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pairs of beams approximately 3.3 km apart. Each pair consists of a strong and weak energy
beam (4:1 ratio). For vegetation studies, it is advised to flag measurements corresponding
to weak beams because of the partly undetected vegetation layering in the returned signals.
The ATLO8 product (Neuenschwander and Pitts, 2019) contains geophysical parameters
related to vegetation and terrain heights (in particular, the top-of-canopy height) but no
metric of canopy density. The parameters are provided with a 100 m step size along the
flight direction. Currently version 6 of the product is available from the National Snow and
Ice Data Center (NSIDC) in the form of strips of photons collected along one orbit. To obtain
segments from the original photon data, the original files are reformatted with the pysl4land
Tool, a set of Python tools to process spaceborne LIDAR (GEDI and ICESat2) for land
(pySL4Land) applications®. Herewith, the original photons are grouped into segments of
100 m length and 25 m width. Variables related to canopy height and corresponding quality
flags are extracted.

Like GLAS, the Global Ecosystem Dynamics Investigation (GEDI) instrument (Dubayah et
al., 2020) is a full waveform LiDAR. GEDI is installed on the International Space Station
(ISS) and, therefore, obtains data for land masses between +/-52° latitude. The size of the
footprint is smaller than for ICESat GLAS (25 m vs. 70 m diameter) and the density of
observations is greater. GEDI acquires data for 8 parallel tracks, separated by about 600
m across track. Along each track, footprint centres are separated by 60 m. The distance
between adjacent orbital tracks was about 1 km until January 2020 after which it increased
to 70 km. From the waveform data, several height metrics, including canopy height (defined
as H100) and canopy density are obtained. These level 2A (height metrics) and 2B (canopy
density) data are provided at the level of individual footprints. Version 2 is currently
distributed. Data from individual orbital files are reformatted with the pysl4land Tool and
relevant variables related to canopy density and height are calculated.

3 https://github.com/remotesensinginfo/pysl4land
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4. Statistical approaches

4.1 Overview of statistical approaches

One of the overarching ideas of the FCM concept is that all output products are delivered
with information on the uncertainty of the products. Typically, all EO based forest variable
maps produced with the FCM tools are accompanied with two different types of uncertainty
information. Firstly, error metrics (see section 4.2.) are calculated with reference field plots
(whenever available). These metrics provide information on the overall level of uncertainty
of the output products. Secondly, pixel-wise uncertainty layers are provided with most
output products. The methods to calculate the pixel-wise uncertainty layers vary depending
on the predictor model (see section 4.3) but all of the layers provide the standard deviation
of the predictions. These layers enable users to analyse the expected level of uncertainty
on pixel level and the spatial variation of the pixel level error within the area of interest.

In addition to the provision of plot and pixel level uncertainty information, two statistical
frameworks to use EO-based forest maps in operational set-up have been demonstrated
during the FCM project. These include the model-assisted estimation and two-step
sampling approaches. The model-assisted estimation combines remote sensing and field
data, improving the accuracy and enabling estimation for smaller geographic area than
would be possible using only field plots. The two-step sampling approach, on the other
hand, is a generic approach that can be implemented in highly varying purposes to
efficiently utilize available datasets (e.g. including wall-to-wall maps, very high resolution
imagery and field samples). In the FCM project the approach was demonstrated in the
Colombian use case.

In this chapter, the statistical approaches used to provide the uncertainty information and
to support the use of the outputs products in operational setting are described.

4.2 Output product error metrics

Whenever reference field plots or other suitable source of reference data are available,
error metrics are provided with the products produced using the FCM tools. Standard set
of error metrics provided with the products produced with the Probability, k-NN and UNet
tools include the following:

1. Root Mean Squared Error (RMSE), which quantifies the difference between
predicted values and reference values. Lower RMSE values indicate more precise
predictions. Conversely, high values indicate more error. Note that the RMSE
includes also the prediction bias (see below). The RMSE is calculated as

2i(yi — 3)? (4.2.1)
n

RMSE =

where y; represents the reference values, yirepresents the predicted values, i=1.....n
indexes the observations, and n is the number of reference observations.

2. Prediction bias (Bias), which provides the difference between the mean of the
predictions and the mean of the reference observations. This is an important error
metric for forest monitoring as it tells about the usability of the predictor for large
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area monitoring. Pixel level errors typically balance each other out for larger areas,
but the bias reveals the level of systematic error in the predictions. The bias is
calculated as

_ %y — 3)

n

Bias (4.2.2)

where y; represents the reference values, y; represents the predicted values,
i=1..... n indexes the observations, and n is the number of reference observations.

3. Coefficient of determination (R?, which quantifies the proportion of the variation in
the target variable that is predictable from the independent variables (used in the
prediction). High R? values indicates a good fit of the predictor model. The R? is
calculated as

iy — 371)2

R? =1 -=L0 T A
2iyi — m)?

(4.2.3)

where y; represents the reference values, y; represents the predicted values,
i=1..... n indexes the observations, and n is the number of observations in the
validation database.

The RMSE and bias values are also provided as values relative to the mean. The absolute
value of the metric is compared to the mean value of the variable in the reference plots,
thereby deriving relative metrics, denoted as RMSE% and Bias%. The relative values allow
easier comparison of the error metrics between different areas of interest and between
different variables.

Typically, the error metrics are calculated using an independent set of reference plots, and
a validation set that has been extracted from the reference data before model training. The
FCM tools also provide a crossvalidation tool to calculate error metrics for the k-NN
predictions. This allows all available plots to be used for the mapmaking. This may have
significant effect on the accuracy, particularly in areas where the number of available field
plots is already limited. Using the crossvalidation tool also ensures that the split of the
reference data does not affect the error metrics.

4.3 Standard deviation layers

4.3.1 k-NN

In addition to the prediction layer, the FCM k-NN tool outputs also a standard deviation
layer for each target variable. These standard deviation layers have been calculated as
the standard deviation of the k neighbours used to derive the prediction.

The standard deviation $(p) is calculated as

s |12i0i(P) = Y (P))?
$(p) = v

(4.3.1.1)
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where y(p) is the prediction for pixel p and y;(p) are the values of the k neighbours used
to calculate the prediction.

The standard deviation layers provide users with information on the level of uncertainty of
the output products on pixel level. They also enable analysis of the spatial variation of the
pixel level errors within the area of interest. It is important to note, however, that the pixel
level errors are expected to balance out when cumulated over larger areas. Therefore, the
prediction bias (see section 4.2) provides more useful information on the expected level of
error for larger interest areas.

4.3.2 UNet

For UNet-model tool, epistemic uncertainty of UNet maps on a pixel-level is calculated as
a model ensemble standard deviation. Here, the idea is that variability in predictions from
multiple models trained on different data splits (folds) quantifies uncertainty stemming from
data variability and model generalization.

The approach proceeds as follows. Given an overall training dataset D, we divide it into m
folds/subsets {D,, D,, ..., D,,} and train m UNet models with the same architecture in such
a way that n-th UNet model is trained on the whole dataset D leaving out D,,, with the
process repeated for all n = 1, ...,m folds. Then during inference, for each mapping unit
(pixel) p of the mapping area, an ensemble mean prediction and ensemble standard
deviation are computed:

1 m
OEESEAO w32
1w )
S = | (5:) - 7)) (4:3.22)
i=1

Ensemble mean is reported as final UNet prediction map, and ensemble standard deviation
reports the model-related uncertainty. As it considers model-related variance, aleatoric
uncertainty is not handled and produced estimate can be considered optimistic compared
to other uncertainty estimates. This uncertainty measure however does not require any
independent ground truthing and can be reported also for maps produced by “blindly”
applying the model.

When independent set-aside ground-truth data are available, conventional map-level
accuracy metrics can be additionally computed, such as RMSE and systematic deviation

(bias). Then, ensemble-derived epistemic uncertainty s, = 5(p) and validation data
derived bias bias,,; can be integrated into overall uncertainty reported on a pixel level:

Stotal = ’Sezp + biast%al (4.3.2.3)
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4.3.3 BIOMASAR

The uncertainty of a GSV prediction from a measurement of the backscatter is obtained by
perturbing the measurement and the prediction model parameters (6%, c%eg, q, @ and b)
with individual uncertainties. The uncertainty of the prediction is then defined as the
standard deviation of the vector of perturbed GSVs obtained by repeating the perturbation
N times. The variance of the GSV prediction from Eq. (5.5.1.6) is then the sum of a variance
component and a covariance component that accounts for the temporal correlation of
prediction errors at a given pixel.

N-1 N

N
S = ) WESW2+2 ) > wiwyCov(ki,¥)) (4.3.3.1)
i=1

=1 j=i+1
where

Cow(Vy, V) = SVid¥my; (4.3.3.2)

In Eq. (4.3.3.1), the variance component is modelled as a linear combination of the
variances associated with the individual stem volume estimates §(Vj)?, where w;? is the
weight introduced in Eq. (5.5.1.5) (Santoro et al., 2015). The covariance component is
expressed in a similar manner where individual error co-variances are weighted. The error
covariance in Eq. 4.3.3.2 is obtained from the pairwise standard deviation of GSV estimates
from image i and image j and the corresponding correlation of errors, rj. To estimate the
correlation of errors, a reference dataset is needed such as extensive plot inventory
measurements or a LIDAR map of GSV with known accuracy

The variance of the stem biomass prediction is obtained with Eq. (4.3.3.3) and accounts for
the variance of the stem volume prediction from Eq. (4.3.3.1) and of the wood density. The
variance of the wood density, 6(WD)2, is modelled using the second order polynomials
developed for Eurasian boreal forests (Thurner et al., 2014)

S(EEY = (WD)2+ 6 (Ve )2 + (Ve )2 - S(WD)2 (4.3.3.3)

The variance of the total biomass density is then obtained by adding the variances of the
individual biomass component. The variance of the branch, foliage and root biomass is
modelled as in Thurner et al. (2014)

S(TE)? = §(58)% + 5(BB)? + §(FB)? + 8(RB)? (4.3.3.4)

4.4 Model-assisted estimation

The aim of using model-assisted approaches is to improve forest variable estimates,
typically over some larger area, that are i) only based on a probability sample, so-called
Direct estimates, and ii) only based on remote sensing products, so-called Pixel-counting
or Synthetic estimates. The model-assisted estimation is a general approach that can be
applied to support integration of EO based products (such as the ones produced with the
FCM tools) into existing forest monitoring schemes based on probability sampling. The
details of the application vary case-by-case, but the general concept remains the same. As
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an example of the procedure and algorithms, we describe here the way model-assisted
estimation was applied in the Norway use case during the FCM project.

In the context of this use case, the probability sample consists of National Forest Inventory
(NFI) field sample plots. It can, however, also be any other type of reliable reference
measurements for the variable of interest, for example taken from aerial images or drone
acquisitions, as long as they satisfy the requirements of a probability sample. In the context
of the FCM project, the remote sensing products are maps of forest attributes including
volume and biomass. But again, the EO based products can be any kind of variable of
interest mapped wall-to-wall by remote sensing or other approaches. For simplicity, we will
describe the methodology in the remainder of the text only for the context of this project
with timber volume as the variable of interest, and Norwegian NFI data as the probability
sample. The aim is to improve the mean volume estimate (over all land uses) for the
productive low-land stratum of the NFI in Norway south of Nordland County as the area of
interest.

The improvement of model-assisted approaches is achieved by combining the direct NFI-
based estimate of the mean volume with the remote sensing-based pixel-counting
estimate. The following steps are needed for a model-assisted estimate:

1) Determine the difference between volume (m3/ha) observed at each sample plot
and the mapped (predicted) volume (m3/ha) at the same location. The difference is
calculated as observed minus predicted. Due to this difference, the applied model-
assisted estimator in our case is referred to as the Difference estimator.

2) Calculate the mean of the differences. This mean is a correction factor for the
systematic error or bias in the remote-sensing based pixel-counting estimator. If,
for example, the map more commonly predicts lower values than observed, then
the correction factor will be positive and indicates a systematic underestimation by
the map.

3) Determine the pixel-counting estimate by calculating the mean over all wall-to-wall
map pixels covering the area of interest.

4) Obtain the model-assisted difference estimate by adding the pixel-counting
estimate and the correction factor.

5) Calculate the variance and standard error of the differences. This is the design-
based standard error of the correction factor and the difference estimator itself.

For determining the improvement of using the map in addition to the NFI field data, the
direct estimate, including the variance and standard error is calculated. If the map is even
slightly correlated with the field data, then the variance of the differences is smaller than
the variance of the observations and the difference estimator is more precise than the direct
estimator. If the map is of low quality, maybe because it exhibits artifacts that result in
outliers, also the opposite may be the case. An intuitive measure of the improvement is the
Relative Efficiency (RE), which is the ratio of the variance of the direct estimator (hominator)
and the variance of the difference estimator (denominator). If RE is larger than 1, the
difference estimator is more efficient than the direct estimator. The RE can be seen as a
factor by which the number of field samples would need to be multiplied to achieve the
same accuracy with the direct estimator as with the difference estimator (assuming that
these additional observations would not be used in the difference estimator).
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The difference estimator provides improvements in two ways: 1) It results in higher
precision of the direct NFl-based estimate (if the map has ok quality), and 2) it provides a
reliable uncertainty estimate for the remote-sensing based map. There are, however, also
a few requirements which include that the reference sample and map data 1) are assumed
to be fully independent, 2) have temporal agreement, and 3) agree in resolution. In practise,
these requirements are seldomly fully met.

Using equations, the steps for a model-assisted estimate are:

The difference d is given by
d; =y, — 3 (4.4.1)

with i ...n indexing the sample plots and n = number of observations, y are observed
values and y are mapped values extracted or otherwise obtained for sample plots.

The correction factor C is given by

C= Z di/n (4.4.2)
The pixel counting estimate is given by the mean of all pixels in the AOI

h= Z »/N (4.4.3)

where N is the total number of pixels.

The difference estimator is given by
YOUT = p+ € (4.4.4)
The variance of YP¥7 and C is given by
v(yPuT) =v(C) = 1/nz d?/(n—1) (4.4.5)
i
with the standard error

SE =V() (4.4.6)

In addition, the direct estimate is given as
Yo = Z yi/n (4.4.7)
i

with variance
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V(Y’D\lr) = 1/”2(% - ymean)z/ (n—1) (4.4.8)

and

RE = V(YD) /v (YDiT) (4.4.9)

4.5 Two-step sampling approach

Sometimes there are multiple different types of datasets available for a given interest area,
including e.g. LIDAR or very high resolution remote sensing data, medium resolution
satellite data and a possibility for field plot measurements. In these kinds of situations,
statistical approaches can be defined to enable efficient use of the datasets and derivation
of rigorous uncertainty information. As an example of a statical framework, we present a
‘two-step’ sampling approach created for the Colombian use case demonstration. The
phrase ‘two-step’ refers to two separate samplings, one being a field measurement
campaign and the other being a sampling for visual interpretation on Planet data. These
two steps are then combined in the estimates of biomass.

Here we present the main concepts and considerations that were taken into account when
defining the framework. The aim is that this description serves as a guideline for future
users defining similar frameworks for their use cases. Note that in our example case the
field measurement campaign was conducted first. The order of the samplings could have
been also different. This would affect also the optimal statistical procedures.

4.5.1. Design and analysis of field campaign sampling

Field reference data is crucial for accurately calibration of estimates derived from EO data.
Over the study area in Colombia, several land cover (LC) classes were identified with EO
data (Sentinel-2, PALSAR-2), presumably containing varying amounts of biomass. For the
sake of this example, these LC classes are called ‘Primary 1’, ‘Primary 2’, ‘Regrowth 1’ and
‘Inundated’. Accurate biomass estimates were needed for these four LC classes for the
study area; the other land cover classes (presumed to have no or very little biomass) could
be given biomass estimates based on them.

At the top level, the sampling design of the field campaign was elementary: in the four LC
classes we made simple random sampling (SRS) designs, independently of each other. In
the practical level, there were several important details that needed to be considered. The
locations had to be accessible in practise (within 6 km from rivers) and there had to be
spare locations in case the field crew found some locations inaccessible during the field
campaign. The total sample size was limited due to time and resources limitations. When
divided into four different LC classes, this meant small subsamples and large uncertainties.
Furthermore, it was possible that the true LC class of a selected location was different from
the LC class of the map that was used to select the location. These issues meant that there
was an inevitable danger of selection bias in the process that finally produced the data.
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The field measurement campaign was carefully documented, and we were able to assure
that the sampling design was followed without any such compromises that were not
considered beforehand. This is important for the statistical validity of the results. In this
example case, there were finally 46 randomly selected locations with known biomass and
with known inclusion probabilities. Therefore, we were confident that the effect of the
selection bias is small.

After the field campaign data was processed, some exploratory data analyses were
performed to see possible outliers and whether the sampling distribution was normal. Box-
Whisker plots (Figure 9) are useful for obtaining an overview of data.
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Figure 9. Box-Whisker plots of Colombia use case field measurement campaign.

For most of the classes the distributions look as expected, with relatively normal
distributions, although with rather high variance in some LC classes. However, in the case
of ‘Primary 2’ sample, we immediately noticed different characteristics compared to the
other samples. To further investigate the distribution of plots within each class, we used
the Normal-Quantile plots. The Normal-Quantile plots are plots of points,

i
(cb—l (n - 1), x(i)>, i=1..n (4.5.1.1)

where @ is the cumulative distribution function (CDF) of the standard normal distribution
and x(;) is the i :th order statistic. Generally, the sampling distributions can be assumed to
follow the normal distribution, and the Normal-Quantile plot is a tool to visually detect
deviations from this assumption.

Figure 10 presents the Normal-Quantile plots for each LC class measured in the Colombia
field measurement campaign. While the other classes show close to normal distribution,
the ‘Primary 2’ sample clearly deviates from the normal distribution. This can be seen e.g.
from the large difference between the mean and median (the two horizontal lines).
Moreover, the ‘Primary 2’ sample may be bimodal, with a rather large gap in observations
between 200 and 300 t/ha. Investigation for the reasons of possible bimodality revealed
some problems in the correspondence between the LC class ‘Primary 2’ and real-world
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‘Primary 2’ class. The real-world class included two different types of forests, which had
shown similar EO characteristics, but have different levels of biomass.

Primary 1 Primary 2

Regrowth it 2 Inundated

1l Dist

Figure 10. Normal-Quantile Plots of Colombia use case field measurement campaign.

When the normal distribution is a plausible model for a sample, it means that the two
parameters, mean and variance, are sufficient to describe the data. The effect of possible
outliers can be studied by computing robust estimates of the sample mean and comparing
them against the sample mean. Such robust estimates include Trimmed mean, Winsorized
mean, and median.

Finally, the confidence intervals around the mean can be computed in various ways,
including the t-distribution based model and bootstrapping. We preferred bootstrapping in
this example case since it provides meaningful results also when the sampling distribution
deviates from the normal distribution.
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4.5.2. Design and analysis of sampling for visual interpretation

The visual image interpretation with 5 m resolution NICF| Planet mosaic was conducted to
improve understanding on the LC class characteristics and distribution. Altogether 1554
visual sample plots (100 x 100 m) were evaluated, recording the LC class distribution.
Within this information, it was possible to finetune LC class distribution in the interest area
and define biomass estimates for the classes where no field sampling was conducted,
thereby improving the biomass estimates derived from the LC map for particular interest
areas.

The sampling design for visual interpretation (Figure 11) was a stratified design with three
strata. In two of the strata, indexed by h, h € {1,3}, it was also a two-stage design. In
stratum h = 2, a simple random sampling design was performed. In strata h € {1,3}, a grid
was first randomly selected and then a simple random sampling was performed from the
grid.

Figure 11. Stratified design for the visual interpretation (SRS stands for stratified random sampling).

Table 4 below collects our notation. The population unit in the visual interpretation sampling
is a square of size 1 ha. In the cases of the first-stage selection of a grid of population units,
the possible grids are disjoint, and the union of all grids cover the whole area.
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Table 4. Statistical notions used.

Notation| Type Explanation
v Generic name Land Cover class y
h Design variable |Indicates the stratum in question: he {1, 2, 3]

m Design parameter | The number of all possible grids

Np Design parameter | The size of the stratum A population

Wy, Design parameter | Stratum weight

i Design parameter | The sample size in stratum 7

i Random variable |Index of the randomly selected grid

in the two—stage designs, k{1, ..., m}
Yhi Random variable |The amount of y in the randomly selected
i-th population unit of stratum &

YuEi; |Random variable |The amount of y in the randomly selected
i:th unit of the k:th grid of stratum h

Np(m, k) |Random variable |The size of the randomly chosen grid &

The sizes of the grids vary; therefore, the usual sample mean of the two-stage sampling in
strata h, h € {1,3}, is biased. The following formula defines an unbiased estimate:

—k _ mNh(m; k) —

where y, is the ordinary sample mean. That is, the ordinary sample mean must be

multiplied by a factor, which depends on the design parameters and the chosen grid. The
variance of the unbiased estimator is

Var(7y) = | D Na(m DNaGm, ) = ) |Var(5,)
n\ = (4.5.2.2)

1 —k\ 2 .
+ Nz (Eyh) E(mN,(m,j) — Np,)?
h

See Chapter 11.2 in (Cochran 1977) for a similar example. Finally, the variance of the
stratified sample mean is computed by the formula

Var(y,,) = WeVar(y,*) + WgVar(y,) + WiVar(y:2) (4.5.2.3)

Above k; and k; refer to selected grids in strata h = 1 and h = 3 respectively. Recall that
sampling in different strata is performed independently of each other, including the first-
stage selection of a grid.

With this approach we were able to provide improved biomass estimates with confidence

intervals for each of the LC classes. These estimates can be used to calculate benchmark
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biomass estimate for the area of interest and any desired sub-areas. The estimates can
also be used to evaluate biomass changes together with the benchmark map and activity
data. For all of these outputs, confidence intervals can be provided.

4.6 European wide biomass map accuracy assessment

An independent accuracy assessment for the European wide biomass map was conducted
in line with the new CEOS LPV protocol for biomass from space calibration and validation.
The new CEOS protocol contains a dedicated section about using existing in-situ data as
reference for the validation of larger area biomass maps, assuming they are properly
screened, processed and harmonized, to allow for comparison with large area biomass
map predictions. The validation procedures were mostly developed as part of the CCI-
Biomass project (CCI Biomass 2020) and have been slightly adapted to the FCM case.

The accuracy assessment of a European wide map required an effort to include a large
number of different reference data sources covering all different geographical regions and
forest types across Europe. Thus, we relied on AGB reference data that were not
specifically produced for validation purposes but that were rather collected within the
context of National Forest Inventories (NFI) and other efforts at local to regional scale. This
had consequences, i.e. that we could not rely on a design based sample. Also, the sampling
frames were different as the biomass map concerns mean forest biomass density
discretised in spatial grid cells (including non-forested area) while the inventories employ
non-uniformly sized and typically small plots within forested areas. Thus, specific care had
to be taken for the map-plot comparison. The assessments were performed at the map
pixel level, as well as spatially aggregated over larger pixel blocks.

It is important to realize that the reference data were also estimates and therefore affected
by errors that should be taken into account when using them in the map-plot comparisons
(Réjou-Méchain et al. 2017, Réjou-Méchain et al. 2019). We deliberately did not specify
the biomass variable of interest, as the retrieval will target growing stock volume (GSV,
m3/ha) and convert this to above-ground biomass (AGB, Mg/ha) and below-ground
biomass (BGB, Mg/ha). In principle, European NFls report all variables in their field data
while research inventory plots maintained by scientific investigators do mostly register AGB
only.

An extensive dataset of forest in-situ data across Europe was acquired for the purpose of
the validation. Plots included in the database underwent a series of quality checks (see
below). In situ forest data were not used for calibration of the European wide map to
guarantee full independence from the production process and because the project’s
biomass map processing chain did not rely on such calibration procedure. The dataset was
part of the AGBref database, a global collection of forest biomass reference dataset (Araza
et al. under preparation).

The following in situ data selection criteria were used for product validation. In situ data
needed:

e A proper citable reference source and metadata to assess the procedures and
quality of biomass prediction.

e Precise coordinates (4-6 decimals for coordinates in decimal degrees).

e A census date within ten years from the reference year of the map products to avoid
temporal inconsistency with the assessed maps.
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e Measurements of all trees of diameter = 10 cm (or less) were included in the
estimates.

e Sites that were not deforested between the year of the inventory and the reference
year of the biomass map. This assessment was based on the forest loss layers of
the Hansen dataset (Hansen et al., 2013).

For map product validation, the response design encompassed different steps leading to
the assessment of differences between map and plot values and the data harmonization
procedure is pictured in Figure 3. The plots used in our comparison may have been
surveyed at a different time than the map to be assessed, they typically differ in spatial
support (i.e., the area covered by individual plots) from the map pixels and they measure
different spatial entities (average biomass over a pixel area versus forest biomass within a
forest plot). Therefore, data harmonization was needed prior to the analysis of differences.

Differences between the inventory date of inventory plots and the reference year of the
map were harmonized using updated IPCC growth rates (IPCC 2019). For dealing with the
distinct sampling populations in terms of both different spatial support and the inclusion of
non-forested areas within map pixels we multiplied the temporally adjusted plot
measurements by forest fraction. This forest fraction was computed by putting a 10%
threshold on a tree cover product (or any other available forest map provided by the user).
This was undertaken both at pixel level and over larger aggregated blocks. In the rare case
of more than one inventory plot occurring within a pixel, the average of the adjusted
biomass per plot was used. The correction for forest fraction was applied only to plots with
an area below 1 ha.

Extract Ref. year
Selected AGB + corrected
plot data AGB @ plot
AAGB support
IPCC growth Input
Support unit rates, up to AT
{individual grid Intermediate result
cell or aggregate)
Output
10% () calculati
threshold / Extract Forest ) Calculation
¢ (mean)
& fraction (FF)
AGB
thres- @ support « FF
hold unit level
(Hansen) Reference AGB @
tree cover support unit level
(~30 m) AGBH_‘I

Figure 12. Overview of reference data harmonization steps for the European wide map.
The flowchart refers to AGB as the forest variable of interest.

As straightforward way of analysing map vs. plot differences and account for the expected
differences in the accuracy of plots in different size categories, we introduced a weight to
reflect the “quality” of the plot data in the accuracy analysis i.e., plot biomass estimates
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were aggregated with inverse-variance weights so that the resulting reference value
matched the spatial support of the map (Plot2Map approach, Figure 12). The accuracy
reporting was done for different biomass ranges.

Two temporally matched AGBref subsets were prepared: the 2020 AGBref subset was
used to validate the 2020 map, whereas the 2015 subset was paired with the 2017 map.
This strategy limited growth-rate mismatch while guaranteeing an adequate sample size
for error calculation. For validation at 10 km grid level, only those 10 km grid cells that
contained more than five field plots were selected, in accordance with the "minimum-plots"
quality flag (Araza et al. 2022). The filtered AGBref locations formed a dense corridor
across continental Europe, with highest concentrations in France, Germany, Poland and
the Czech Republic as well as across the Baltic—Scandinavian belt Figure 13).
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Figure 13. Overview of the locations of AGBref plots used and compared with the European wide
map.
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5. Algorithm descriptions

5.1 Overview of the section

In this section, we describe the underlying algorithms of the FCM tools used to predict
continuous forest structural variables and changes. EO-based features derived from the
data sources described in chapter 3 (or similar sources) are typically used as predictor
variables, while in some cases also Airborne LIDAR Scanning (ALS) based features can
be used. Some of the algorithms are applicable for predicting one forest attribute at a time,
while several approaches can produce predictions of multiple forest variables
simultaneously. Depending on sensor considerations, some tools are suitable or optimal
for predicting only selected sets of forest variables. A good example is the better suitability
of optical satellite data to predict forest tree species composition, while radar backscatter
at longer wavelength should be a better candidate for GSV prediction.

The algorithms described in this chapter include:
1. Probability, a forest classification and prediction algorithm.
2. k-NN, a non-parametric algorithm widely used in forest monitoring.

3. UNet, a popular convolutional neural network recently introduced for pixel-level
forest mapping regression task (forest variable prediction from EO images)

4. BIOMASAR, a physical approach for forest growing stock volume and biomass
prediction.

5. Autochange, an image-to-image change detection algorithm.

6. PREBAS, a process-based ecosystem model for prediction and forecasting of
biomass and carbon fluxes.

7. Data assimilation, an approach to combine information from several input sources
to enable consistent temporal monitoring of forest areas.

For potential user of the FCM tools, it is important to understand the potential and limitations
of the available monitoring algorithms. This chapter provides the description of the
algorithms and observation of the performance of the algorithms achieved in the FCM use
case demonstrations.

5.2 Probability
5.2.1 Algorithm description

The Probability forest classification and prediction approach (Hame et al. 2001) approach
includes three phases: 1) Proba Cluster, 2) Proba Model and 3) Proba Estimates. The
overall workflow of the forest structural variable prediction is illustrated in Figure 14. The
process is started with the Proba Cluster module, performing image clustering of the input
images using k-means clustering and maximum likelihood classification. After the
clustering, the Proba Model module is used to associate the field measurements with the
clusters. Both spectral statistics and forest variable values are needed for each cluster
whose number is a parameter value. The forest variable values for each cluster can be
computed as an arithmetic mean or median of all the field measurements belonging to this
cluster.
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Based on earlier experience (Hame et al. 2001; Sirro et al. 2018; Miettinen et al. 2021),
median value is recommended to derive cluster values for most variables, while mean value
of the sample plots falling into a given cluster is used for proportional variables (such as
tree species proportions). The median approach is less affected by potential outlier plots,
but the average approach produces more reasonable predictions for the proportional
variables (ensuring them summing up to 100%).
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Figure 14. Overall workflow of the forest structural variable prediction using the Probability
approach.

The resulting model can be analysed by comparing manually cluster spectral distribution
in the spectral coordinate system and via visual analysis of a satellite image. This manual
phase allows modification of the model. For instance, clusters representing non-forest may
lack field observations and consequently reference data values, but their structural variable
values can be manually set to zero.

Finally, the Proba Estimates is used to compute a forest-variable prediction for each image
pixel. A multivariate normal distribution for each cluster is characterized using its mean
vector and covariance matrix. A cluster membership probability for a spectral vector x is
computed for five spectrally closest clusters and these probabilities are scaled to sum up
to 1. These cluster membership probabilities are used as weights when deriving a final
prediction for a given pixel as a weighted sum of reference data values for five spectrally
closest clusters (Hame et al., 2001), calculated as:

N
fx) = ZP(ch)fc (5.2.1.1)

where f(x) is the target variable value for spectral vector x, P(c|x) the probability for spectral
vector x belonging to cluster c, fc the target variable value for cluster ¢ and N the number
of clusters.
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5.2.2 Performance

Overall, the Probability method provided comparable results to the k-NN algorithm in sites
where both methods were applied and compared. However, the greatest benefit of the
Probability method is that it can be applied to areas with very limited field reference data
available (e.g. less than 50 plots). In these situations, it may be impossible to apply the k-
NN method at all, or the output may be of very low quality. The Probability method, on the
other hand, allows manual investigation and modification of the model, which makes it
feasible to use it in areas with limited field reference data availability.

The Probability method was used in five FCM use case demonstrations: Galicia, Ireland,
Extremadura, Styria and Peru. In addition, it was tested in several test sites during the main
project. As with all the prediction models, the Probability error metrics varied strongly
between demonstration sites, depending on the availability and type of field reference data,
the used EO datasets and EO image quality. Table 5 provides two examples of the error
levels in two sites, one in Ireland and one in Finland. In both of these examples, a
combination of Sentinel-1 and Sentinel-2 data was used. The Ireland results can be
considered exceptionally good, while the Finland results provide a more typical level of
expected accuracy.

Table 5. Examples of the error levels of output products produced with the Probability method.

H GSV N Spruce% Pine% Larch% BL%
(m)  (m%ha) (N/ha) (%) (%) (%) (%)

RMSE
RMSE %
Bias
Bias %
RMSE
RMSE %
Bias
Bias %
*D = diameter, G = basal area, H = height, GSV = growing stock volume, N = density/number of trees,

Spruce% = proportion of spruce, Pine% = proportion of pine, Larch% = proportion of larch and BL% =
proportion of broadleaf

Figure 15 illustrates the effects of EO dataset combinations in forest variable prediction
with the Probability method. The clear improvement in volume prediction with the inclusion
of TanDEM-X can be seen as a narrower point cloud. The RMSE and RMSE% for this case
were 73.72 m3ha and 46.75%, with the relative bias of 2.18%. In comparison, the
corresponding values using Sentinel-1 and Sentinel-2 were 85.88 m®ha and 54.46%, with
the relative bias of 5.34% (Table 5).
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Figure 15. Scatter plots of GSV prediction with Probability using Sentinel-1 + Sentinel-2 (left) and
Sentinel-2 + TanDEM-X (right).

Overall, the experiences with the Probability method gained over the course of the FCM
project highlight the significance of the available datasets (both reference data as well as
EO data). The available dataset combinations largely define the level of uncertainty that
can be reached in a given site. In addition to that, there are naturally variations between
sites due to ecological and environmental conditions. All this leads to fact that it is very
difficult to define an expected range of error levels for a given site before tests with the
available datasets combinations have been conducted.

5.3 k-NN
5.3.1 Algorithm description

The k-Nearest Neighbour method (k-NN; Alt, 2001) is a popular non-parametric and
distribution-free algorithm for forest monitoring. It has been widely used to predict
numerous forest structural variables in different parts of the world (Chirici et al. 2016). When
abundant field reference dataset is available (preferably over 100 field sample plots), it
provides a fast and efficient tool for conducting forest mapping and monitoring in the target
area. As a multivariate method it allows predicting several target variables simultaneously,
thus ensuring also their relationships.

In the k-NN algorithm, the predictions for the target variable values (such as GSV or AGB)
are obtained as linear combinations of the attribute values in a set of k units selected from
a reference set of units with known values (Figure 16). The choice of these units is
determined by a distance-metric defined on the auxiliary variable space. The k reference
units with the smallest distances to the target unit in the auxiliary space are selected.
Simultaneous prediction of all forest variables distinguishes k-NN from most other
prediction approaches. It is a non-parametric estimator since predictions can be made
without estimating any parameters, as well as distribution-free prediction approach
because predictions can be made without any prior distributional assumptions.
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Figure 16. Schematic representation of k-NN method for predicting continuous variables (Antropov
et al. 2017).

The considered reference and prediction units can be forest plots, pixels or stands. The k-
NN predicted vector 9, for pixel p is calculated as

Yp = Z Wi.p Vi, (5.3.1.1)

iel

where y; is the vector of observations for the i-th contributing unit in the reference set, I is
the subset of contributing units that are nearest with respect to the distance metric, and
w; , is the weight of /-th contributing unit calculated as

d:!
Mt - i€l
Wip = Z d; , . (5.3.1.2)
iel
0 otherwise

where t €[0,2]. Common choices are t = 0, which weights all reference set plots equally
thus making the prediction a simple averaged vector, and t = 1 or t = 2 which weight units
inversely to their feature space distance or distance squared from pixel p. Popular
selections for the distance metric are Mahalanobis distance (Kendall & Stewart, 1968) or
weighted Euclidean distance,

L
di.p = Z vi(xig — -\'/J.l);-. (5.3.1.3)

=1

where d;,, denotes the distance in feature space between pixels i and p, and [ indexes
the features; and vector v; consists of weights associated with [ individual features.
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5.3.2 Performance

Overall, the k-NN algorithm was found to work reliably and consistently in different types of
conditions and with a variety of variables, as long as sufficient number of reference field
plots are available. It is not recommended to use the k-NN approach with less than 100
reference field plots, unless it has been verified that the plots provide a representative
sample of the entire target population and range of EO data spectral values. As already
discussed above, the performance compared to the Probability method is rather similar.
The benefit of k-NN is the fast and easy implementation. But with small numbers of
reference field plots the Probablity method is a safer option.

The k-NN method was used in three FCM use case demonstrations: Romania, Catalonia
and Norway. In addition, it was used as the benchmark algorithm for making dataset
comparisons in the testing sites during the main project. The experiences gathered from
these tests and demonstrations provided valuable information on the usability of the
algorithm and the level accuracy that can be reached in various ecological and
environmental conditions, and with a wide range of EO dataset combinations.

Table 6 provides two examples of the error levels in output products produced with the k-
NN algorithm, one in Romania and one in Catalonia. In both of these examples, a
combination of Sentinel-1 and Sentinel-2 data was used. The two sites have rather similar
levels of uncertainty, with relative RMSE ranging typically between 30% and around 50%
percent depending on the variable, while the bias can be expected to be typically less than
4%. Both of these two examples fall into the general level of uncertainty observed in the
cases where the k-NN method has been applied.

Table 6. Examples of the error levels of output products produced with the k-NN method.

H GSV Con% BL% AGB

(m) (m*ha) (%) (%) (t/ha)
RMSE
RMSE %
Bias
Bias %
RMSE
RMSE %
Bias
Bias %

*D = diameter, G = basal area, H = height, GSV = growing stock volume, Con% = proportion of conifers, BL%
= proportion of broadleaf and AGB = above ground biomass
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Catalonia

The scatter plots presented in Figure 17 reveal generally rather good agreement with the
reference and predicted forest structural variable values. However, two typical tendencies
are worth noting. Firstly, the low values are on average overestimated. This can be seen
exceptionally clearly in the Romanian basal area predictions, as a sharp rise from zero.
Secondly, all of the scatter plots show a tendency of saturation at higher values of the
variables. For example, the Catalonia basal area predictions seem to saturate at a level of
around 30 m?/ha, although some values in the reference data are over 40 m?/ha. Together,
these two tendencies lead to “averaging” effect of the predictions, meaning that the
predictions tend to gravitate towards the mean of the reference data. Although this does

42



Forest Carbon Monitoring CCN2 Algorithm Theoretical Basis Document
(ATBD), Update

not affect the average statistics over the interest areas, it is very important to understand
the effects of the averaging e.g. in modelling context. The output map products typically
show higher proportion of middle-range forests and underestimate the proportion of low
and high values.

It is also important to highlight that the averaging tendency is a common feature in all EO
based forest monitoring, not restricted only to k-NN algorithm. This is particularly true for
traditional machine learning algorithms. New deep learning approaches, such as the UNet
method presented in Section 5.4 seem to have high potential in reducing the saturation
effects.
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Figure 17. Scatter plots of diameter (D) and basal area (G) from Romania (top row) and growing
stock volume (V) and basal area (G) from Catalonia (bottom row). All produced with k-NN method.

The extensive k-NN testing allowed also evaluation of the effects of the EO data
combinations. The tests highlight the importance of finding optimal dataset combinations
(Figure 18). Particularly the availability of datasets strongly related to the height of the
canopy (such as TanDEM-X coherence or canopy height models) greatly improve the
prediction accuracy. The findings of Teijido et al. (2025) support the finding that the effects
of the dataset combinations are clearly larger than the effects of the methods used in the
prediction. This is important to keep in mind when selecting the most suitable algorithm to
use in a particular case. It is more important to first gather the EO and reference datasets
and then only choose the algorithm that best suit prediction with the available datasets.
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Figure 18. Growing stock volume (top) and height (bottom) prediction with various EO data using
the k-NN method.

5.4 UNet
5.4.1 Algorithm description

Since recently, deep learning approaches popular in computer vision tasks and consistently
beating conventional machine learning methodologies across various benchmark datasets,
got attention in EO based forest mapping. We selected UNet, a variant of fully convolutional
network, as a baseline deep learning model for forest variable prediction from multisource
SAR and optical images. The UNet model was originally proposed for biomedical image
segmentation and is presently often used in various semantic segmentation tasks.

The basic UNet (also known as Vanilla UNet) uses convolutional network to extract features
(Ronneberger et al. 2015). Unlike basic CNN (Krizhevsky et al. 2012), the fully
convolutional and skip-connection structures allow UNet to extract deeper features of input
data, maintain good fusion ability at all levels, while keeping the feature map size
unchanged, suggesting it an excellent choice for pixel-level classification (semantic
segmentation) and regression tasks.

The overall structure of UNet is symmetric, similar to encoder—decoder, shown in Figure
19 below. The encoder is responsible for feature extraction, and the decoder restores the
feature map to the original size. Each box in the UNet indicates a feature map, where the
corresponding size is denoted near the boxes. The blue arrow indicates a double-
convolution structure as a core unit of the model, composed by cascading a two-
dimensional convolution, batch-normalization and RelLu activation. The two-dimensional
convolution captures features at current level and an activation layer projects the obtained
feature map to a nonlinear feature space.

A 2x2 pooling downscales the original feature map to half of its spatial size, expanding the
receptive field for the subsequent double-convolution. As the model goes deeper, the larger

receptive field means more global information of the input data can be captured.
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In decoder, the green arrow indicates the upsampling operation to restore the size of
feature maps. As the pooling operation discarded some details, applying skip-connection,
represented by grey arrows, the shallow feature maps are concatenated to deep features
recovered from upsampling. The final arrow represents a 1x1 convolution projection
function, which maps the last feature map to the target space. The 1x1 convolution kernel
size preserves the spatial size and enables pixel-level prediction.
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Figure 19. Basic UNet model structure after Ronneberger et al (2015) and the overall UNet model
pretraining pipeline for EO based forest variable prediction.

The model can be effectively trained using spatially explicit representations. In scenario
when forest plots are available, training from scratch typically leads to unsatisfactory results
not better than with conventional pixel-based methods as spatial representations are not
effectively learned. In this situation, and effective approach is pretraining a general model
using fully segmented labels, followed by model finetuning with forest plots. The model can
be further enforced with attention mechanisms (Ge e al. 2022) or used as a part of semi-
supervised contrastive regression approaches (Ge et al. 2023b). The UNet algorithm has
also shown good results in transfer learning tasks with forest plot data (Ge et al. 2023).

5.4.2 Performance

In the FCM project, the UNet algorithm was used to produce the demonstration products
in the Catalonian and Norwegian use case areas. In addition, the algorithms were tested
in several testing sites, including training and finetuning the models with different types of
datasets. Two main approaches were evaluated: 1) training and application of the model
in target area and 2) geographic or temporal transfer of the model to target area or year.
The findings on the performance of these two types of applications are highlighted in this
section to illustrate the level accuracy that can typically be reached with the model in
different situations.

Table 7 provides an example of error level reached in the Norwegian demonstration area,
with a model trained using ALS based wall-to-wall forest variable layers and multi-source
EO data (Sentinel-2, Sentinel-1 and PALSAR-2 mosaic). Comparison to k-NN results from
the same use case reveal consistently better RMSE and R? metrics of the UNet based
results. Particularly the large difference in the R? values indicate larger explaining power of
the UNet algorithm.
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Table 7. Examples of the error levels of output products produced with the UNet method, compared
to corresponding k-NN results.

D D
R 5.50 8.56 3.33 79.92 5.57 9.44 3.81 91.27
R %o 35.3 51.9 284 69.4 36.0 58.2 32.6 80.8
Bia 0.84 1.27 0.56 12.49 0.05 0.06 0.11 0.77
Bias % 54 7.7 4.8 10.9 0.3 0.4 0.9 0.7

R 0.32 0.64 0.61 0.63 0.13 0.5 0.42 0.45
*D = diameter, G = basal area, H = height, V = growing stock volume

However, the UNet based results also have significant bias in the Norwegian use case,
compared to the nearly unbiased k-NN results (Table 7). Depending on the use case, this
may or may not have significant effect on the usability of the method. For example, if the
maps are used as input to model-assisted estimation, the bias will be corrected in the
estimation phase. The bias is also visible in the density scatter plots, which otherwise show
high agreement between the predicted and the reference values (Figure 20).

500
250

400
200

—

w

o
W
o
o

Predicted H (dm)

-
o
o

Predicted V (m3/ha)
~N
o
o

50 100

% 50 100 150 200 250 100 00 300 400 500

2
Reference H (dm) Reference V (m3/ha)

Figure 20. Height (left) and growing stock volume (right) density scatter plots in the Norway
demonstration use case for UNet algorithm.

For operational application of the UNet models, a model transfer (either geographic or
temporal) is often required. This is because suitable training data may not be available in
the target area. In this case, a model trained in similar ecological conditions can be
transferred to the target area by finetuning it with a small number of plots. Model transfer
does not necessarily affect negatively the accuracy of the results. To illustrate the
behaviour of models before and after fine-tuning, Table 8 presents height prediction results
with a UNet model that was trained in Finland with ALS based wall-to-wall forest variable
maps and applied in Norway without (“blind”) and with fine-tuning (“fine-tuned”). The results
were compared to k-NN and a UNet model trained with Norwegian ALS based wall-to-wall
forest variable maps (“SR16”).
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Table 8. Examples of the error levels for height prediction with various UNet model training options
and the benchmark k-NN method. See text above for more details.

RMSE

RMSE %
Bias
Bias %

R2

It can be seen that the model finetuning brought the results to the same level that could be
reached with the model trained with local reference data. Figure 21 illustrates how model
transfer changes the shape of the prediction scatterplots, compared to “blind” application
and a model trained with local reference data.

o

200

&
s

Pradicted M (2m)
Predicted H (¢m)
Predcted H (4m)

20 S0

0 50 100 P 25 300 b 0 100 =0 02 ] 00 1 %0 300

150 P 150 200 S 150 Pl
Heference M {dmi Reterence M (dm) Retervnce M (dm)

Figure 21. Density scatter plots of height prediction in Norway with “blind” application of Finnish
model (left), fine-tuned Finnish model (centre) and Norwegian model (right).

Overall, comparisons between k-NN and UNet based forest structure maps revealed
consistently better error metrics for the UNet models. Furthermore, the maps produced with
UNet models resulted in a more natural-looking distribution of forest variable values, with
clearer distinction of adjacent forest stands (Figure 22). It also enabled prediction of higher
volume and biomass, reducing the saturation effects observed in volume and biomass
predictions. The improved high-volume prediction was particularly clear in stand-level
accuracy assessment conducted in the Norwegian use case demonstration (Figure 23). It
is important to realise that all of the reference stands had volume above 120 m3/ha. There
is relatively good agreement in the UNet maps up to around 400 m®ha, while saturation
effects start to be very clear in the kNN maps already from around 250 m3/ha onwards.
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Figure 22. Volume maps produced with UNet (left) and k-NN (right). Grey indicates non-forest area.
Volume (green) range 0-600 m%/ha.
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Figure 23. Observed vs. predicted mean volume per stand for kNN and UNet-based maps.

A potentially negative aspect of the UNet algorithm is that it is developed and run
individually for different variables. This may, in theory, lead to discrepancy between the
forest structural variables. This is also the case with model transfer, as the models for each
forest structure variable are fine-tuned separately. The model transfer to the target area is
at its best a very effective method to utilise existing UNet model in the area of interest,
without the need of extensive field measurement campaigns. However, it is recommended
that the representativeness of the plot data used in the fine-tuning, as well as the
consistency of the results between forest structural variables is evaluated carefully.
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5.5 BIOMASAR
5.5.1 Algorithm description

Prediction of forest biomass density, defined either in the form of structural parameters
such as Growing Stock Volume (GSV, unit m3 ha') or in the form of organic mass such as
Above Ground Biomass (AGB, unit Mg ha'), requires observations of both the horizontal
(i.e., tree density) and vertical (i.e., height) properties of a forest. To predict the mass, in
addition, tree form factors and wood densities are needed. Remotely sensed data from
space do not offer such a variety of observations. Therefore, biomass can only be inferred
by means of mathematical models, which are tailored to adapt to remotely sensing data
available with the aid of reference biomass data from ground surveys. This aspect becomes
even more crucial when available measurements have limited sensitivity to biomass, which
is the case for satellite missions with imaging instruments currently in operation.

The unavailability of spatially dense datasets of reference biomass measurements for most
regions of the world implies that model-based biomass mapping from satellite remotely
sensed data of large areas, e.g., continents, requires strong generalizations of local model
training. Eventually, this results in strongly biased estimators of biomass (Mitchard et al.,
2014, Avitabile et al., 2016). An approach that can overcome such limitations is a self-
calibrating method. Rather than training the prediction model with biomass measurements,
the model parameters are predicted by deriving statistical parameters of the satellite
observations (SAR backscatter in our case) for given forest conditions. Herewith, the
biomass prediction model linking biomass to satellite data makes use of auxiliary remotely
sensed datasets (e.g., canopy density, LiDAR-based metrics, land cover) together with
statistics predicted from forest inventory data (Santoro et al., 2011, Cartus et al., 2012).
Despite several approximations in how the model is trained, the performance of such
calibration methods, referred to as BIOMASAR, was found comparable to the performance
achieved when the models were trained with in situ measurements (Santoro et al., 2011).
This suggested the application of BIOMASAR for large-scale mapping of biomass using
spaceborne SAR backscatter observations (Santoro et al., 2015). More recently, such
methods have been implemented to generate the global datasets of GSV and AGB
provided in the framework of ESA’s GlobBiomass project (Santoro et al., 2021a) and CCl+
Biomass project (Santoro et al., 2024a).

The BIOMASAR retrieval approach can be summarized as follows:
¢ Input: SAR backscatter (e.g., from Sentinel-1 or ALOS-2 PALSAR-2)

¢ Retrieval model: Water Cloud Model integrated with structural functions (allometries)
to predict GSV

¢ Model training: self-calibration
e Feature selection: weighted average of GSV predictions from individual SAR
backscatter observations

Prediction of GSV from the SAR backscatter images is based on the method proposed in
Santoro et al. (2021b). The relationship between the SAR backscatter and GSV is
expressed with the physically-based Water Cloud Model with gaps (Askne et al., 1997) in
Eq. (5.5.1.1). This model described the backscattered intensity from a forest as a function
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of the backscatter from the forest floor through gaps in the canopy, the backscatter from
the forest floor attenuated by the canopy and the backscatter from the canopy.

1'5Fri"l-:>r =(1- Wﬂﬁ- + ’Tﬂ'gr'rrree + Wﬂt?eg':f — Teree) (551 1)

The model parameters ¢%:and o%e4 represent the backscattering coefficient of the ground
and vegetation layer, respectively. Tuee represents the two-way tree transmissivity and is
expressed as with « being the two-way attenuation per meter through a tree canopy and h
being the depth of the attenuating layer, which is assumed to correspond to the canopy
height.

The model expresses the forest backscatter as a function of n and h, i.e., canopy density
and height. To establish a dependency upon GSV, the two variables are replaced with
forest structural models relating canopy density to canopy height in Eq. (5.5.1.2) (Santoro
et al., 2024b), and h to GSV in Eq. (5.5.1.3) (Santoro et al., 2024b). The estimation of the
model parameters q, a, b, relies on spaceborne LIDAR and statistics of GSV from NFls
(Santoro et al., 2024b).

n=1-e% (5.5.1.2)

V =a-hP (5.5.1.3)
In this way, the retrieval model expressed the SAR backscatter as a function of GSV only:

o o —a(aV\b = WaV)P —a(avP —afavy? & b
”/”m- — 05;,r (e qlav)® | p-a(aV)® _ ,—(q+a)(aV) )+03ey(1 —e~UaV)? _ —a(av)? o (q+a)r_uV)’) (5.5.1.4)

To predict stem volume from a measurement of the SAR backscatter, the model
parameters 0%, c%eg and « need to be computed first. The prediction is implemented in
the form of a model self-calibration not requiring in situ data as part of a training set. Self-
calibration means that the backscatter of pixels in correspondence of areas with small
andlarge canopy densities (e.g., based on the Global Forest Change dataset by Hansen et
al., 2013) are extracted and the median backscatter value for each class is calculated. The
value for small canopy densities is associated with o%. The value for large canopy
densities is associated with “dense forests” and, therefore, needs to be compensated for
residual ground contribution to obtain the value representative of the backscatter from the
canopy only, i.e., c%eg. The self-calibration is undertaken with a sliding window approach
and separately for each image to adapt the predictions of the model parameters to the local
conditions of the forest at the time of image acquisition. For a detailed description of the
implementation in this project, it is referred to Santoro et al. (2024b).

The key feature of the BIOMASAR approach is the combination of GSV predictions from
multiple SAR backscatter observations because it improves the accuracy of the prediction
compared to a single-image prediction regardless of the SAR dataset (Santoro et al., 2011;
Cartus et al., 2012). Individual predictions of GSV, V,, are combined into a final value, Vpt,
with a weighted average (Kurvonen et al., 1999).
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Ef:i Wil

Vine = T
f=1Wi

(5.5.1.5)

Each weight w; = (c%eg,i - 6%:,i) is defined as the difference between the predictions of the
model backscatter coefficients for the specific image, i. This approach indeed favors
predictions corresponding to images acquired under conditions that maximize the
sensitivity of the backscatter to stem volume (Santoro et al., 2011; Cartus et al., 2012).

An additional step is pursued if several SAR datasets are available (e.g., Sentinel-1 and
ALOS-2 PALSAR-2). In this case, each set of SAR observations is piped into a specific
BIOMASAR module to exploit frequency-specific strengths and to reduce the impact of
systematic weaknesses of each dataset on the final predictions. The dataset-specific
predictions of biomass from Eq. (5.5.1.5) are eventually merged with the aim of reducing
biases and uncertainties. The merging consists of a weighted average of e.g., the C- and
L-band GSV predictions; the procedure is outlined in Santoro et al. (2024b). When SAR
images are available for several years, yearly estimates of GSV can be generated. Merging
of the C- and L-band datasets is then implemented on a year-to-year basis, i.e., the weights
are defined for each year. To harmonize the computation, the estimation of the weights
relies on a cost function that is minimized across years following the procedure described
in Santoro et al. (2024a).

In principle, the BIOMASAR approach can be implemented to predict AGB instead of GSV
by plugging in an allometry that relates canopy height to AGB as currently undertaken in
the CCI Biomass project, where AGB is the forest variable of interest (Santoro et al.,
2024a). The reason for pursuing a prediction of GSV is that for the European forest
landscape, GSV is the primary forest variable of interest. AGB, BGB and carbon-related
variables can then be predicted from GSV by simple scaling. Here, we introduce two
approaches.

Stem volume can be converted to stem biomass, SB, with an estimate of the wood density,
WD (unit: g/cm?3) in Eq. (5.5.1.6). SB can then be used to predict the biomass density in
branches, BB, foliage, FB, and roots, RB, (Thurner et al., 2014) to obtain an estimate of
total biomass with Eq. (5.5.1.7). In other words, total biomass represents the sum of the
above- and below-ground biomass.

5B =V-WD (5.5.1.6)
TR = AGB + BGB = 58 + BE + FE + RE (5.5.1.7)

For the wood density, we propose to use average values per leaf type reported by Thurner
et al. (2014) because they are based on extensive datasets from European forests. The
biomass of branches, foliage and roots is modelled as a function of stem biomass with a
power-law function (Thurner et al., 2014). Again, we shall use the coefficient estimates
proposed by Thurner et al. (2014) for broadleaves and conifers because they are based on
extensive measurements from European forests. For the stratification of the landscape by
leaf type (broadleaves and conifers, i.e., either needleleaf deciduous or needleleaf
evergreen), we shall use a dataset contemporary to the SAR observations and with similar
spatial resolution.

AGB can also be estimated from GSV with a simple Biomass Conversion and Expansion
Factor (BCEF). The BCEF is defined as the product of wood density and the stem-to-total
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biomass expansion factor representing the proportion of above-ground biomass to the stem
biomass (Santoro et al., 2021a).

AGE = WD - BEF - GSV = BCEF - GSV (5.5.1.8)

A global raster dataset of BCEF estimates was generated from extensive measurements
of wood density and biomass proportions (Santoro et al., 2021a). The dataset was found
to be accurate across almost the entire range of BCEFs worldwide. The major limitation of
this dataset is the limited spatial resolution (1 km), which hinders reproducing small-scale
spatial patterns of species composition. For this reason, the approach with the BCEF is
only introduced to benchmark the approach proposed by Thurner et al. (2014).

5.5.2 Performance

5.5.2.1 BIOMASAR model calibration

The BIOMASAR approach relies on a model relating the forest backscatter to canopy
density and height, and on two allometries that relate canopy density, canopy height and
growing stock volume, to allow for a direct prediction of the latter from SAR backscatter
measurements.

For the allometry that relates canopy density and height (Eq. 5.5.1.2) we produced
estimates of the model parameter q from ICESat GLAS metrics of the two variables on a
1° tiling basis as currently implemented in the CCI Biomass algorithm (version 6). We also
tested the set of estimates of the model parameter obtained with the same LIDAR dataset
but different stratification algorithm (Kay et al., 2021). These estimates were characterized
by a larger variability of values and caused frequent over- or underestimation of the
modelled backscatter at the test sites, thus being deemed as less reliable. Compared to
the previous version of this document, our new set of estimates replaces the dataset therein
presented and based on Santoro et al. (2022).

For the allometry that relates canopy height and GSV (Eq. 5.5.1.3), we first compared the
results derived purely from forest inventory plot data with those obtained from ICESat-2
LiDAR (height, RH98 metric) and inventory statistics (GSV) (Figure 24). The relationship
between the two variables was established at the level of provincial averages because of
the weak correlation at the level of individual inventory plots. This comparison could be
undertaken in six European countries for which plot data from national forest inventories
are freely available. The strong similarity of the ensemble allometry (Figure 24) reinforces
the use of provincial statistics, published by most NFlIs in Europe, and averages from
ICESat-2 LiDAR canopy heights. Figure 24, however, shows different relationships
depending on the country. To accommodate for the spatial variability of the association
between canopy height and GSV, we stratified the ICESat-2 and provincial GSV statistics
by ecoregion (Dinerstein et al., 2017), leading us to four allometric functions that describe
the relationship between canopy height and GSV across the European forest landscape
(Figure 25).
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Figure 24. Observations of average tree height and GSV from NFI data for administrative units from
six countries and corresponding model fits (dashed curves) using Eq. 5.5.1.3 (left panel).

The black solid curve represents the model fit to the ensemble of all observations. For the ensemble, the
plot shows the coefficients and the SE of the regression. In the right panel, we show observations of
average ICESat-2 canopy height and GSV from NFI data for administrative units from those six countries.
The black solid curve represents the fit of Eq. 5.5.1.3 to the ensemble of all observations.
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Figure 25. Measurements of canopy height from ICESat-2 data averaged at the level of NFI units and
corresponding GSV value published by the NFls stratified by ecoregion (Dinerstein et al., 2017).
In each panel, the curve represents the fit of Eq. 5.5.1.3 to the measurements. Coefficients of Eq. 5.5.1.3
and the standard error of the regression are visualized in the upper left corner of each panel.

Validation of the BIOMASAR approach was undertaken at the sites of Catalonia, Finland
N, Finland S and Romania for which extensive observations of GSV from field
measurements were available. To validate the self-calibration approach, we compared the
modelled backscatter from Eq. 5.5.1.4 with the same modelled backscatter obtained with a
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least squares regression to the training dataset at each site and for each date of the
Sentinel-1 and ALOS-2 datasets. In Figure 26, the scatter plots show the estimates of the
WCM parameters ¢%r and o9 for the sites of Catalonia and Finland N and the Sentinel-
1 datasets. These were the only sites characterized by moderate to high correlation
between backscatter and GSV observations. For the Finnish site, we observe strong
agreement between estimates whereas for Catalonia, there appears to be a systematic
offset depending on polarization and parameter. We explain the discrepancy as a
consequence of the fitting procedure based on inventory data, which does often not
generate a realistic estimate. This result is relevant in the overall context of deeming
reliable such model fits based on ground reference data.
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Figure 26. Scatter plots comparing the estimates of o6%-and %4 from the regression fit to the
observations (x axis) and from the self-calibration (y axis) for VV- and VH-polarized Sentinel-1
images over the test site of Catalonia and Finland N (Santoro et al., 2024b).

The dashed line represents the identity line.

The same analysis was undertaken for the time series of ALOS-2 observations, here
represented by the backscatter in the yearly mosaics produced by JAXA (2015-2020). The
individual ALOS-2 PALSAR-2 used for the pan-European map were not available at the
time of this study. The estimates of o%r and o%eg from the two model fitting procedures
show an overall strong similarity except for the HV-polarized dataset over Catalonia where
the external calibration generated slightly higher values than the traditional regression
based on ground reference data. We have already identified such an issue with the
Sentinel-1 data and explain the discrepancy because of the potentially unrealistic values
associated to 6% and o%eg Which were due to the low correlation between backscatter and
GSV. Our analysis demonstrated the importance of retrieving GSV from multiple L-band
observations.

The accuracy of the GSV estimates obtained with the BIOMASAR approach and with the
traditional model training procedure based on reference GSV values is reported with
respect to a set of inventory plots that were not touched during the model development and
calibration phase. The metrics are calculated at plot level. GSV class medians are also
displayed in the figures to visualize the tendency. The GSV estimates were obtained for
each SAR dataset and then merged to obtain a final value that may reduce sensor-specific
over- or under-estimations.
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Figure 27. Scatter plots comparing the merged estimates of GSV from the WCM trained with ground
refence data (“Training”, left panels) and from the WCM calibrated with the BIOMASAR algorithm
(“Calibrated”, right panel) to the GSV from the inventory data for the test site of Catalonia.
Crosses illustrate the comparison at the plot level. Circles represent the median value of the estimated GSV
for a given range of GSV from the inventory. The dashed line represents the identity line.

The merging weights differed depending on the test site. The weighting factor for the L-

band GSV estimates ranged between nearly 0 (Finland N), 0.23 (Catalonia), 0.54

(Romania) and 0.9 (Finland S). In general, the results obtained with BIOMASAR were on

average reliable and only slightly poorer compared to those obtained by fitting the WCM to

the reference measurements of GSV (Figure 27). For Catalonia, the weighting was geared

towards the C-band dataset, which was correct given the poorer performance of the
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retrieval with L-band. For Finland N, the weighting excluded the L-band estimates although
the retrieval results were of higher quality. This is a shortcoming of how the normalization
procedure for the weight was implemented for this analysis. The set of ws values were
obtained for the four sites only and Finland N was characterized by the lowest of the values
resulting in a normalized value of 0. For Finland S, the L-band estimates were preferred,
which agrees with the superior performance of the retrieval compared to C-band. Finally,
for Romania, the weights were of similar magnitude; however, given the lack of correlation
between GSV and backscatter, these results are not relevant. Indeed, using the same
model but different calibration approaches led to completely different retrieval results, a
consequence of the insensitivity of the backscatter to GSV.

The uncertainties of the SAR and LIDAR measurements and of the individual model
parameters quantified by their standard deviations were propagated to obtain an estimate
of the GSV’s uncertainty for a given SAR observation. For each band, the GSV uncertainty
was then expressed as the weighted average of the individual uncertainties and accounted
for the temporal correlation of the errors. Finally, the uncertainty of the merged GSV was
computed as the weighted average of the band-specific uncertainties. We visualize the
uncertainty of the GSV as a function of the estimated GSV in Figure 28 for Catalonia,
Finland N and S. The results for Romania are omitted because of the overall very high
uncertainty (> 100% of the estimate). The uncertainty at the pixel level was considerable
and differed between sites. We attribute this to the sensitivity of the backscatter to GSV,
which was more pronounced in Finland N than elsewhere, and to the temporal correlation
of errors which was remarkable at all sites.
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Figure 28. Standard deviation of GSV estimates as a function of the estimated GSV at plot level for
the sites of Catalonia, Finland 1 and 2.

BIOMASAR requires a set of auxiliary parameters such as canopy density, maximum GSV
etc. In the development phase, the values were mostly a constant and reflected the local
conditions of each site. For the implementation on Forestry TEP, where the mass
processing was run, the auxiliary information consisted of raster datasets derived from EO
data expressing per-pixel values of e.g. canopy density, canopy height, maximum biomass,
land cover type etc. Indeed, none of these parameters can be detailed at the spatial
resolution of the pan-European dataset (20 m) with in situ measurements. The accuracy of
each of those datasets has therefore an impact on the accuracy of the pan-European data
product.
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Figure 29 shows the comparison of plot-based and map-based values of GSV for the same
four sites as above. Compared to the development phase, the results have somewhat lower
accuracy. For the two Finnish sites, the layer of maximum GSV based on ICESat-2 heights
constrained the retrieval to an interval of GSV values smaller than the real one, causing
underestimation at high GSV levels. The somewhat bended relationship between plot- and
map-based values was due to imperfections in the allometry relating canopy height and
canopy density. This was based on ICESat-1 data which were acquired primarily under
leaf-off conditions, thus biasing such model. For Catalonia, the errors were explained as a
consequence of inaccurate maximum GSV estimates. The results for Romania were
caused by imperfect calibration of the Water Cloud Model when implemented on Forestry
TEP. The errors were introduced when selecting “ground” pixels, many of these having
been neglected as a consequence of the strong filtering of land cover types implemented
in the Forestry TEP processing.
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Figure 29. Scatter plots comparing the map-based estimates of GSV from the BIOMASAR approach
implemented on FTEP for the pan-European processing with ground refence data.

Crosses illustrate the comparison at the plot level. Circles represent the median value of the estimated GSV
for a given range of GSV from the inventory. The dashed line represents the identity line.

The results at plot level indicate that the pan-European processing captured the spatial
distribution of GSV (and thereof of AGB and BGB) but had substantial issues at the spatial
resolution of the maps. Aggregating the maps to coarse spatial resolution confirmed this
indication. Figure 30 shows an example for the Romanian site where plot-based and map-
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based average values of GSV are compared at different aggregation levels. Much of the
variance affecting the full spatial resolution (Figure 29) disappeared after averaging as also
confirmed by the R? value, which increased from 0.15 at full resolution to 0.76 at 1 km and
close to 1 at coarse resolutions.
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